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a b s t r a c t

This paper presents a numerical investigation of factors that influence the design of precise measurement
networks based on the random error reduction attributes of data reconciliation. The cited factors provide
a basis for developing design heuristics that target specified streams for maximal variance reduction. In
this investigation, distinct network structures were generated from a case study flowsheet using a strat-
egy that conserves the input and output stream configuration across all generated candidates. The factors
were assessed by determining the extent of variance reduction experienced after data reconciliation.
Input and output flows were targeted for optimisation owing to their custodial importance in high pre-
cision measurement applications such as metal accounting. The results confirm the dependence of vari-
ance reduction on measured variance as concluded in previous studies. However, the ratio of stream to
parent-node variance emerges as a better predictor of variance reduction for individual streams, partic-
ularly in complex network structures.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Metal accounting is concerned with the estimation of metal
from ores and their subsequent distribution in the output streams
of minerals beneficiation operations. The ‘system of sampling and
weight measurement equipment’ from which accounting measure-
ments are routinely collected is generally referred to as a measure-
ment network. An important requirement of primary accounting is
that boundary measurements are determined with acceptable pre-
cisions. There are a numbers of ways of achieving this that include
the use of better hardware, duplicate measurements and more
stringent sampling and analysis procedures. In secondary account-
ing, these methods are also applied to all pertinent internal
streams. Notwithstanding the improved precisions attained, these
measures may consume disproportionate amounts of resources
compared to the results achieved. In addition, the expectation of
closed balances is often unfulfilled in the short term as a result
of random errors that degrade the quality of metal accounting data.
Consequently, the minimisation of random error in measurements
remains an important objective in applications such as metal
accounting.

Steady state data reconciliation is frequently used to adjust
measured data so that network constraints are verified while
measurement variances are simultaneously reduced. The extent

of variance reduction depends on the choice of measurement
schemes, and is only determined after data reconciliation is per-
formed on a given network design (Hodouin et al., 1998). The prob-
lem of designing networks in order to meet specified objectives
based on the measurement correction attributes of data reconcili-
ation has been extensively treated in ‘sensor network design’ stud-
ies (Narasimhan and Jordache, 2000). A drawback of the data
reconciliation approach however, is that the extents of variance
reductions experienced by individual measurements are generally
unpredictable. In other words, one cannot predict which measure-
ment variances will be reduced the most and by what margin of
reduction. Thus performing data reconciliation on a given data
set may result in a good reduction in variance on streams that have
little relevance while leaving the variance of important streams
(e.g. boundary streams) relatively unchanged. This detracts from
the data reconciliation process the potential of being utilised as a
single step design tool for predicting improvements in precision
on targeted measurements at the conceptual stages of network
design.

Save for a few efforts (Lyman, 2005; Bepswa et al., 2006, 2008;
Chakraborty and Deglon, 2008), attempts to develop guidelines or
heuristics that predict the reduction in variance through data rec-
onciliation for specific streams had not been explicitly dealt with in
the literature. This paper numerically tests design factors in the
aforementioned literature that can be used as a basis for develop-
ing heuristics/guidelines for designing precise measurement net-
works through the error reduction attributes of steady-state data
reconciliation.

0892-6875/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mineng.2012.11.008

⇑ Corresponding author. Tel.: +27 21 650 5503; fax: +27 21 650 5501.
E-mail address: paul.bepswa@uct.ac.za (P.A. Bepswa).

Minerals Engineering 42 (2013) 50–61

Contents lists available at SciVerse ScienceDirect

Minerals Engineering

journal homepage: www.elsevier .com/ locate/mineng

http://dx.doi.org/10.1016/j.mineng.2012.11.008
mailto:paul.bepswa@uct.ac.za
http://dx.doi.org/10.1016/j.mineng.2012.11.008
http://www.sciencedirect.com/science/journal/08926875
http://www.elsevier.com/locate/mineng


1.1. Background

Steady-state data reconciliation is usually formulated as a con-
strained weighted least-squares adjustment problem. Eqs. (1) and
(2) outline the general structure of the problem.

Minxa ðxa � xmÞTR�1
m ðxa � xmÞ ð1Þ

s:t: Axa ¼ 0 ð2Þ

The weights are usually the inverse of the measurement error vari-
ances (Rm) and the constraints to be satisfied are the mass balance
equations that define the measurement network as described by the
network incidence matrix A. The adjusted and measured compo-
nent flow rates are represented by the vectors xa and xm respec-
tively. Solving Eqs. (1) and (2) for the adjusted flow rate results in
Eq. (3). The reconciled flow rates xa verify Eq. (2). Estimates of the
reconciled flow rate variances can be obtained by using the propa-
gation of variance through formulae to yield Eq. (5), where Ra is a
matrix containing adjusted flow rate variances.

xa ¼ I � R�1
m AT ARmAT

� ��1
A

� �
xm ¼ Bxm ð3Þ

where

B ¼ I � R�1
m AT ARmAT

� ��1
A

� �
ð4Þ

Ra ¼ BRmBT ð5Þ

In order to assess the reduction in variance experienced due to
steady-state data reconciliation, the adjusted variances can be ex-
pressed as a fraction of the corresponding measured variances as
shown in Eq. (6) to yield ‘variance reduction ratios’ for each mea-
sured variable in the network.

Ra

Rm
¼ BBT ð6Þ

R ¼ H
Ra

Rm
ð7Þ

An extraction matrix (H) can be used to observe selected vari-
ance reduction ratios (R) as shown in Eq. (7). In the current study,
H is designed to extract variance reduction ratios for the important

boundary streams. For clarity, the foregoing derivation assumes
the simplified case of a single-component mass flow network
where there are no cross-stream correlations between measure-
ment error variances. Hence Rm essentially reduces to a diagonal
matrix with off-diagonal elements identical to zero.

1.2. Design factors for precise measurement networks

Lyman (2005) provided earlier insights into a priori design of
measurement networks based on the achievement of overall preci-
sion through steady-state data reconciliation. The work produced
an explicit expression of the average improvement in precision ex-
pected in linear circuits consisting of Nn nodes and Ns streams, in
which all streams are measured with equal variances (Eq. (8)).

Average
VarðadjustedÞ

VarðmeasuredÞ

� �
¼ 1� Nn

Ns
ð8Þ

Eq. (8) introduces an important decision variable, the circuit node to
stream ratio (Nn/Ns), which can be used to compare network designs
based on network structure. However, the model only predicts the
average variance improvement for the linear network and hence
cannot be used to predict precision improvement for individual
streams. Later, Chakraborty and Deglon (2008) attempted to resolve
this by deriving a ‘flowsheet-independent’ formula that solved for
variance reduction ratios of individual input and output streams
(hereon referred to as terminal streams) in conceptual networks
by symbolically solving Eq. (6) resulting in

r2
aðn1Þ

r2
mðn1Þ

¼ 1� r2
mðn1Þ

Q
8n–n1

Mn � tnumeratorQNn Mn � tdenominator

 !
ð9Þ

Here, the reconciled or adjusted variance r2
aðn1Þ

� �
of an observed

terminal stream (attached to node n1) is expressed as a fraction of
the corresponding measured variance, r2

mðn1Þ. Mn is the sum of vari-
ances of all streams associated with the respective parent node n in
the given circuit, N is the total number of nodes in the circuit and
the t terms are measures that gather network ‘stream effects’ on
the numerator and denominator expressions of the quotient term
in the equation. Significantly, Eq. (9) discerns internal and terminal
stream measurements, ostensibly on the basis of their mathemat-
ically separable responses to variance reduction through steady-
state data reconciliation formulation. Through simulations of

Nomenclature

Abbreviations
s.t. subject to

Indices
a adjusted value
m measured value
n nodes
s streams
i(n1, n2) internal streams connecting nodes n1 and n2

T transpose

Labels
n, n1, ni, nj, nk nodes

Parameters (units)
r2

mðn1Þ measured variance of observed stream attached to node
n1 ([mass flow units]2)

Mn sum of measured variance of all streams attached to
node n ([mass flow units]2)

Nn total number of nodes in a flowsheet (–)

Ns total number of streams in a flowsheet (–)
Var(measured) sum of measured variance of all streams in a flow-

sheet ([mass flow units]2)
xm vector of measured component flow rates (mass flow

units)

Variables (units)
r2

aðn1Þ adjusted variance of observed stream attached to node
n1 ([mass flow units]2)

R matrix of observed variance reduction ratios (–)
Var(adjusted) sum of adjusted variance of all streams in a flow-

sheet ([mass flow units]2)
xa vector of adjusted component flow rates (mass flow

units)

Matrices
A flowsheet incidence matrix
Rm measured variance–covariance matrix
Ra adjusted variance–covariance matrix
I identity matrix
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