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a b s t r a c t

The flotation process is widely used to separate valuable minerals from waste in the minerals industry. It
is well known that recovery decreases with increasing particle size, and a reason often given is that large
particles detach from bubbles in the turbulent shear flow induced by the impeller in mechanical flotation
cells. The energy produced by the impeller is transferred to the liquid in the cell and dissipates through-
out the tank. In the impeller region, the turbulence is non-isotropic, but in a very short distance, it
becomes isotropic, with the typical cascade of eddies from large to micro-scale length scales.

The aim of this study is to observe the behavior of particle–laden bubbles in the turbulent shear flow
near a rotating impeller in a flotation cell. An agitated vessel was constructed in which bubbles could be
introduced beneath the impeller. Bubbles were generated in a liquid-fluidized bed in a special chamber
beneath the cell, in which the fluidizing liquid contained a collector that enabled the particles in the bed
to adhere to the bubbles. When the bubbles entered the impeller zone, some particles were observed to
detach, while others remained attached to the bubble and rose out of the vessel as a flotation product. The
fractional detachment of particles was related to the mechanical energy dissipation rate in the region of
the impeller. A standard Rushton turbine was used. The results are compared with theoretical predictions
of Schulze (1977, 1982).

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Flotation is used to separate valuable mineral particles from
gangue material, and also in wastepaper recycling for separating
ink particles, and for removal of blue-green algae from waste
waters. For the flotation of mineral particles, mechanical cells are
widely used. To suspend the particles in the cell a rotor and a stator
are provided. At typical impeller rotational speeds, the Reynolds
number is quite high and the flow is fully turbulent. Except for
the small region quite close to the impeller, the turbulent flow is
isotropic and can be described by the theory of Kolmogorov
(1941). A range of eddies of different sizes is produced, and energy
cascades from eddies of large dimension, the production range,
through to smaller eddies known as the inertial sub-range, down
to micro-scale eddies. It is in the latter eddies that the mechanical
energy is dissipated into heat by the action of viscosity.

Particle size is an important flotation variable, and it is known
that the rate constant for ultrafine and coarse particles is lower
than for intermediate particles. In this context, ultrafine mineral
particles are those less than 20 lm and coarse particles are above
100 lm, both figures being convenient approximations. The influ-
ence of particle size on rate of recovery of minerals from flotation
pulps has been investigated by several researchers (Jameson et al.,

1977; Jowett, 1980; Trahar, 1981; Ahmed and Jameson, 1985;
Yoon and Luttrell, 1989). Schulze (1977, 1982) in particular devel-
oped a theory in which it is hypothesized that detachment may oc-
cur when a bubble is trapped in the center of a rotating eddy in the
turbulent flow, and a particle on the surface experiences a centrif-
ugal force as a result. If the centrifugal force exceeds the surface
tension forces that tend to keep the particle attached to the bubble,
the particle detaches. Schulze proposed a critical dimensionless
group, the Bond number Bo, which is the ratio of the centrifugal
force of detachment to the capillary retaining force, and detach-
ment occurs when Bo > 1.

In the present work, Schulze’s hypothesis and the criterion for
detachment is tested, by measuring the detachment of particles
from bubbles in a well-characterized flow field developed by a
Rushton turbine in a suitably-designed flotation cell. The fractional
detachment of particles from bubbles is represented in terms of the
Bond number. Silica and glass particles with a range of sizes were
used as test materials.

2. Theoretical background

In mechanical flotation cells, the flow field generated by the
impeller is turbulent and the local rate of dissipation of mechanical
energy through eddy formation is high. The theory developed by
Schulze (1977, 1982) is based on the hypothesis that when a bubble–
particle aggregate finds itself in the eye of a rotating eddy in the
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region of the impeller, the particle experiences a centrifugal force
that may overcome the surface tension force that is holding the par-
ticle at the interface. The particle will then detach.

The forces acting on a particle may be calculated with reference
to Fig. 1, in which rp is the particle radius, r0 is the distance of the
three-phase contact line from the vertical axis; h is the immersion
depth of the particle; H is the height of the spherical cap above the
meniscus; z0 is the height of the meniscus above the three-phase
line (deformation of the liquid meniscus at the solid surface), h is
the particle contact angle, / is the polar angle, i.e., the angle be-
tween the surface tension direction (the tangent of the meniscus
at the three-phase contact line) and the horizontal, and x is the an-
gle subtended by the vertical axis and the position of the three-
phase contact line.

We now calculate the components of the forces acting on the
particle (Nutt, 1960; Princen, 1969; Schulze and Stoeckelhuber,
2005). Note that for the time being we will calculate the forces
as if the system were static, extending the analysis to the dynamic
case later. The force of gravity acting on the particle is given by:

Fb ¼ ð4=3Þpr3
pqpg; ð1Þ

where rp and qp are the particle radius and density; g is the gravita-
tional acceleration, which is directed vertically downwards, and x is
the unit vector in the direction of interest.

The up-thrust applied by the liquid on that part of the bubble
volume immersed in the liquid is given by:

Fb ¼ ðp=3Þr3
pqlgð1� cos xÞ2ð2þ cos xÞ; ð2Þ

where ql is the liquid density.
The force due to the hydrostatic pressure of the liquid of height

z0 above the contact area is expressed as:

Fhyd ¼ pr2
0qlgz0 ¼ pr2

pqlgz0 sin2 x; ð3Þ

but Schulze (1984) showed that this term is negligible in flotation
when the particle size is <300 lm and the contact angle is <90�.

The capillary force stabilises the attachment of particles to the
gas–liquid interface. It acts along the tangent to the gas–liquid
interface at the three-phase contact line and tends to pull the par-
ticle into the gas phase. The equation for the force in the vertical
direction is

Fca ¼ 2prpr sin x sinðxþ hÞ ð4Þ

where r is the surface tension of the liquid.
Under the action of surface tension, the pressure inside the bub-

ble is greater than that in the liquid outside the bubble, by the
amount 2r/rb, from the Young–Laplace equation. Since part of
the solid particle is exposed to the gas in the bubble, there will
be a force tending to push the particle away from the bubble. With
a small correction (Schulze, 1984), this force may be written

Fr ¼ pr2
p

2r
rb
� 2rbqlg

� �
sin2 x: ð5Þ

The detaching force due to the rotation of the particle about the
center of the bubble, with acceleration bm:

Fd ¼ ð4=3Þpr3
pqpbm ð6Þ

In the presence of the turbulence induced by the impeller in the flo-
tation cell, an external centrifugal force acts on a particle on the sur-
face of a rotating bubble. The acceleration provided to the aggregate
was denoted the ‘machine acceleration’ by Schulze (1982), who
showed that it could be related to the rate of energy dissipation
in the cell by:

bm ¼ 1:9e2=3=D1=3
b ; ð7Þ

A dimensionless Bond number Bo can be defined as the ratio of
forces of detachment to those of attachment. Thus

Bo ¼ Fg � Fb þ Fd þ Fr

Fca
ð8Þ

Substitution of the forces gives, with Dp = 2rp,

Bo ¼
D2

pðDqg þ 1:9qpe2=3=D1=3
b Þ þ ð3=2ÞDpðð4r=DbÞ � DbqlgÞ sin2 x

6r sinx sinðxþ hÞ
ð9Þ

where Dp is the particle diameter. In a system where the contact
line can move freely around the surface of the spherical particle,
and is not pinned at any place, Schulze (1977) showed that the
maximum attachment force occurs when

x ¼ p� h=2 ð10Þ

Eq. (9) is Schulze’s expression for the Bond number, with the factor
1.9 arising from his original investigation. We have reconsidered
the theoretical path taken by Schulze, and have found a number
of errors in the derivation. Accordingly, we arrived at a slightly dif-
ferent result, that we designate the modified Bond number.

2.1. Modified Bond number

There are several points at which Schulze’s analysis is question-
able; these relate to

(a) the appropriate radius of the eddy;
(b) the omission of the buoyancy force;
(c) a missing factor of 1.5.

2.1.1. The appropriate radius of the eddy
The forces considered in the Bond number are the capillary

forces acting at the gas–liquid interface, and the centrifugal force
induced by the vortex motion, in the isotropic turbulent flow gen-
erated by the impeller. The centrifugal force is simply the product
of the mass of the particle and the centrifugal acceleration u2/r, u
being the tangential velocity and r the radius of rotation, equal to
the radius of the bubble. To find the force, we need to know the
tangential velocity. Schulze (1977) did not provide the details on
this point, relying on the work of Liepe (1977).

The energy and the velocity components of eddies in the inertial
subrange are drawn from the Kolmogorov theory of isotropic tur-
bulence in which the energy spectrum is expressed as:

EðkÞ ¼ C1e2=3k�5=3 ð11Þ

where C1 is a universal constant whose value is 1.5 (Pope, 2000). Eq.
(10) is the ‘5/3 power law’ of Kolmogorov. The mean velocity fluc-
tuations in the inertial sub-range are given byFig. 1. Coordinate system for a spherical particle located at the gas–liquid interface.
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