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a b s t r a c t

Quantitative structure–activity/property relationship (QSAR/QSPR) studies are mathematical quantifica-
tion of relations between structure and activity or property. These are extensively used in pharmaceutical
and agricultural chemistry for screening potential compounds for specific biological activity and also in
environmental toxicology. The linear or nonlinear regression models that establish a relation between the
structure and the activity/property are then used to predict the activity/property/toxicity of any number
of structurally related compounds including those that are yet to be synthesized. Computable molecular
descriptors are preferred to experimental properties in QSAR analyses because they require molecular
structure as the only input and can be inexpensively calculated for a chemical in less than a millisecond.
The use of QSAR approach for modeling the efficiencies of chelating collectors was tested and it was
learnt that the performances of chelating mineral collectors are amenable to QSAR modeling. The molec-
ular similarity approach used for the selection of structural analogues was used for the selection of N-
arylhydroxamic acids. In the case study, 10 N-arylhydroxamic acids were selected from a virtual database
of 3800 compounds and thus, a large structural space was explored without spending much resource. The
10 compounds were then synthesized and tested as collectors for sphalerite. Molecular similarity–dis-
similarity clustering was found to be an effective scientific tool in the pursuit of finding new mineral
collectors.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Pharmacological activities, chemical reactivity and physico-
chemical properties of organic compounds depend on molecular
structure. The quantitative-relation that brings out the dependence
of a property or activity (P) on entire molecular structure or its sub-
structural fragment is called quantitative structure–activity rela-
tionship (QSAR)

P ¼ a1 � S1 þ a2 � S2 þ � � � ð1Þ

where a indicates a coefficient and S indicates a structural property
or an empirical property of the whole molecule or any of its sub-
structural units. Depending on the nature of P in Eq. (1), the relation
is also called as quantitative structure–property relationship (QSPR)
or quantitative structure–toxicology relationship (QSTR). QSAR ap-
proach is extensively used in pharmaceutical chemistry and predic-
tive toxicology. In pharmaceutical industry, application of QSAR
may be considered as the first step in a multi-step computer-as-
sisted screening of therapeutically active compounds. Development
of QSAR models with good predictive abilities rely on the effective

transformation of structural details of molecules into numerical
quantities. Topological indices (TIs) are extensively used to encode
structural details into numbers, i.e. they are the molecular metrics.
There are over 300 TIs and their definitions, and calculations can be
obtained from the monographs by Devillers and Balaban (1999) or
Todeschini and Consonni (2000). In addition to TIs, quantum
mechanical parameters such as energy of highest occupied molecu-
lar orbital (EHOMO), energy of the lowest unoccupied molecular orbi-
tal (ELUMO), and partial atomic charges are also used in forming
QSAR models (Karelson et al., 1996). Computable molecular
descriptors are preferred to experimental physicochemical proper-
ties because their computation requires no information other than
molecular structure as input.

Though the dependence of efficiency of chelating collectors on
their molecular structures had been studied (Somasundaran
et al., 1993; Nagaraj 1988; Marabini et al., 1988; Marabini, 1993;
Das et al., 1995; Fuerstenau et al., 1964; Ackerman et al., 1984,
1987, 1999; Nirdosh et al., 1994; Urbina, 2003; Natarajan and
Nirdosh, 2001a, 2006), no quantitative treatment had been re-
ported. There is implicit dependence of efficiency of a chelating
agent (organic compound) as flotation collector on the molecular
architecture, and QSAR is the approach that quantifies this intui-
tiveness. Natarajan et al. (1999) extended the QSAR approach to
model the efficiency of chelating collectors. They successfully
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showed that the separation efficiencies of chelating collectors are
amenable to QSAR modeling and topological indices (Natarajan
and Nirdosh, 2001b), electronic parameters, physicochemical prop-
erties such as octanol–water coefficient (logP), soil–water partition
coefficient (logKoc), and geometrical parameters that describe the
molecular surface area could be used to form the QSAR models
(Natarajan et al., 2002a; Natarajan and Nirdosh, 2003).

A large number of TIs can be calculated for a given set of com-
pounds and many topological indices are mutually related. Princi-
pal Component Analysis (PCA) is one of the ways to eliminate the
problem of over-fitting by using correlated descriptors and it also
extracts minimum number of orthogonal parameters that explain
the maximum variance among the calculated descriptors. Principal
components (PC) thus extracted can be used as independent
parameters (descriptors) to form the regression equations. Natara-
jan et al. (2002b) used this approach to correlate the separation
efficiencies of cupferron derivatives. A brief summary of the QSAR
work on different collectors is given below:

Multiple linear regression (MLR) using topological indices, as
well as principal components were carried out on three sets of
data:

(1) A set of 22 cupferron derivatives used to float a uranium ore
(Nirdosh et al., 1994).

(2) A set of 14 mercaptobenzothiozole tested to float a lead ore
(Marabini et al., 1988).

(3) A set of 9 o-aminothiophenol tested to float a zinc ore (Mar-
abini et al., 1988).

The three data sets and a set of 17 N-arylhydroxamic acids used
to float a copper zinc ore (Natarajan and Nirdosh, 2001a) were
modeled using calculated physicochemical parameters instead of
topological indices.

Octanol–water partition coefficient and soil–water partition
coefficient were two of the important physicochemical parameters.
Octanol–water partition coefficient (usually expressed as its loga-
rithmic value, logP) is extensively used as a measure of hydropho-
bicity of compounds in QSAR modeling along with electronic and
steric parameters. Several software are available for computing
logP from molecular structure using group contribution parame-
ters, and the calculated logP, denoted as ClogP is used in QSAR
modeling. On the other hand soil–water partition coefficient, Koc,

gives the extent to which an organic compound partitions itself be-
tween soil or sediment and water. Similar to octanol–water parti-
tion coefficient soil–water partition coefficient is also used as its
logarithmic value and can be calculated using software. The esti-
mated logKoc therefore expresses the tendency of adsorption inde-
pendent of soil characteristics. QSAR studies on mineral flotation
data were reviewed by Natarajan et al. (2003) and the important
findings of the QSAR modeling studies are:

(1) Topological indices or the principal components extracted
from them could be used as independent parameters to
describe the molecular architecture.

(2) In the case of congeneric collectors, (collectors having the
same chelating group), introduction of electronic and quan-
tum mechanical parameters did not improve the predictive
ability significantly.

(3) Computed soil–water partition coefficient, logKoc, and octa-
nol–water partition coefficient, ClogP, were found to be
good computable property parameters that gave QSAR equa-
tions of good predictive ability.

(4) The regression equation formed had good predictive ability
and the differences between predicted and experimental
separation efficiencies were less than the experimental
errors (±5).

Efficiency of a collector depends on the extent to which the col-
lector molecule renders the mineral surface hydrophobic and also
on the extent to which it adsorbs on the mineral. ClogP is a mea-
sure of hydrophobicity while logKoc is a measure of adsorption ten-
dency of an organic compound on soil (i.e. mineral, in flotation)
and this might be the reason for good QSAR models obtained using
them. Though these two parameters cannot account for the various
factors involved in the collector–mineral interaction, they seemed
to work well for a set of congeneric compounds.

An earlier study (Natarajan and Nirdosh, 2001a) on N-arylhydr-
oxamic acids indicated that flotation of sphalerite may be obtained
without activation by copper sulphate. Hence, the research was
continued to synthesize more N-arylhydroxamic acids including
dihydroxamic acids. A total of 31 compounds (8 used in earlier
study and 23 new compounds) were tested to float sphalerite from
the Cu–Zn ore used in the previous study. Unlike the previous
study, N-arylhydroxamic acids were used to float sphalerite after
floating most of the chalcopyrite with a collectorless prefloat. The
results of the study were reported (Natarajan and Nirdosh, 2006)
and no QSAR modeling was carried out for this set of data. How-
ever, sphalerite was floated without activation as observed in the
previous study. It was not sure whether the activation was due
to the copper present in the ore. Hence, the study was extended
for the flotation of sphalerite from a Pb–Zn ore. Instead of testing
the compounds that gave the best results with the Cu–Zn ore, it
was decided to use molecular similarity-based selection of com-
pounds in order to explore a large database. QSAR studies on che-
lating collectors showed that compounds with very close structural
similarities had comparable collector efficiencies of flotation of a
particular mineral and this gave impetus to test molecular similar-
ity-based clustering, a computational method used in pharmaceu-
tical industry, as a scientific method for selecting compounds for
synthesis and testing as sphalerite collectors. A brief outline of
molecular similarity clustering and selection is given in the follow-
ing section.

2. Molecular dissimilarity/similarity clustering

Johnson and Maggiora (1990) showed that molecular similarity
clustering was an efficient method in the selection of compounds
and prediction of biological and physicochemical properties, and
Lajiness (1990) found this method useful for the selection of a
small number of compounds from a virtual library (a database of
compounds that contain all possible structures) in the process of
identification of new therapeutic agents. To create a similarity
space for the selection of compounds, an appropriate measure of
molecular similarity is needed. Physicochemical properties, topo-
logical indices and sub-structures called atom-pairs had been used
in constructing structure spaces for selection (Basak et al., 2006).
Use of experimental data has a very restricted application due to
the limitation in their availability for all the chemicals under con-
sideration. Computable properties are always preferred for the
purpose. Clustering procedure using topological indices as a mea-
sure of molecular similarity may be explained as below:

Let us consider that t numbers of topological indices are calcu-
lated for the given set of m structures. The data set is very large
hence, the (t �m) data matrix is subjected to data reduction by
principal component analysis (PCA). The principal components
are computed in such a way that the first factor describes the larg-
est part of the data variability, the second factor is orthogonal to
the first and describes the largest part of the variability left over
by the former factor, and so on. Usually principal components with
eigenvalue equal to or greater than one are retained or extracted.
Hence, by performing principal component analysis, the majority
of the information contained within the original data can be repre-

R. Natarajan, I. Nirdosh / Minerals Engineering 21 (2008) 1038–1043 1039



Download English Version:

https://daneshyari.com/en/article/234628

Download Persian Version:

https://daneshyari.com/article/234628

Daneshyari.com

https://daneshyari.com/en/article/234628
https://daneshyari.com/article/234628
https://daneshyari.com

