
Scaling of discrete element model parameters for cohesionless and
cohesive solid

Subhash C. Thakur b, Jin Y. Ooi a,⁎, Hossein Ahmadian b

a School of Engineering, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JL, UK
b Newcastle Innovation Centre, Procter and Gamble Technical Centre Ltd., Newcastle upon Tyne NE12 9BZ, UK

a b s t r a c ta r t i c l e i n f o

Available online 14 June 2015

Keywords:
DEM
Scaling
Cohesive powder
Uniaxial test

One of the major shortcomings of discrete element modelling (DEM) is the computational cost required when
the number of particles is huge, especially for fine powders and/or industry scale simulations. This study inves-
tigates the scaling of model parameters that is necessary to produce scale independent predictions for cohesion-
less and cohesive solid under quasi-static simulation of confined compression and unconfined compression to
failure in uniaxial test. A bilinear elasto-plastic adhesive frictional contact model was used. The results show
that contact stiffness (both normal and tangential) for loading and unloading scales linearly with the particle
size and the adhesive force scales very well with the square of the particle size. This scaling law would allow
scaled up particle DEM model to exhibit a bulk mechanical loading response in uniaxial test that is similar to a
material comprised of much smaller particles. This is a first step towards a mesoscopic representation of a cohe-
sive powder that is phenomenological based to produce the key bulk characteristics of a cohesive solid and has
the potential to gain considerable computational advantage for industry scale DEM simulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The discrete elementmodelling originally developed by Cundall and
Strack [3] has increasingly been used to model many problems involv-
ing discrete phenomena including powder packing [21,35], compaction
[14,26], powder flow [19,27–29], rotating drum [33], mixing [2], hopper
flow [8,12], fluidized bed [34], pneumatic conveying [6,25] and many
others. A detailed report on the applications of DEM can be found in
the review paper by Zhu et al. [36]. The DEM simulations of the afore-
mentioned phenomena have given many significant insights into the
microscopic details at particle level and useful information to under-
stand complex behaviour exhibited by granular material. For fine
particles, onemajor shortcoming of DEM simulations for practical appli-
cations is the challenge of modelling very small particles. Even the
smallest industrial processes involve interaction of trillions of fine
particles, and it becomes computationally impossible and impractical
to account for every individual realistically sized particles.

There are several possible solutions [18] for the speed-up of DEM
simulation, such as optimization of the hardware and the software, in-
cluding improved DEM algorithm, parallel computing, and simplifying
the calculation process. Common ways to simplify the calculation pro-
cess are done, for example, using a lower spring stiffness, using mono-
sized particles, and using a cut-off distance for long range forces [18].

Other possibilities are the use of higher particle density in quasi-static
simulation [26] known as density scaling, reduction of number of parti-
cles by scaling the system size down or scaling up the size of particle.
Pöschel et al. [22] proposed a general approach to scale down the exper-
iments to laboratory size. They found that the dynamics of their granu-
lar system changed if all sizes were scaled by a constant factor, but
leaving the material properties the same.

Pöschel's approach is more suitable for problems where an original
physical problem is scaled down to a laboratory model in an attempt
to obtain a physical model of the problem. This approach may not re-
duce the computational time in DEM modelling because the number
of particles still remains the same and the particle size is also reduced.
One possible solution is to use larger size elements (particles) to reduce
the number of particles whilst keeping the original system size the
same, however, this would violate geometric similarity and may intro-
duce some error in the bulk response as reported in Feng et al. [7]. The
major issue in this kind of approach is to adjust DEMmodel parameters
such that large particle DEMsimulation result exhibits the samedynam-
ic and static properties as small size realistic particles. This approach is
sometimes referred to as coarse graining approach and has been used
by a few researchers in the field of cavity filling [1], pneumatic convey-
ing [25], and rotary drum [33].

This study investigates the scaling of model parameters that is nec-
essary to produce scale independent predictions for cohesionless and
cohesive powder under quasi-static 3D simulation of confined compres-
sion and unconfined compression to failure. The target is to develop
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DEMmodelwith scaled up DEMparticle to exhibit the compression and
shearing bulk behaviour in a uniaxial test exhibited by powders.

2. DEM model and theoretical background for scaling

2.1. DEM contact model

ADEM contactmodel based on the physical phenomena observed in
adhesive contact experiments has been proposed [11].When two parti-
cles or agglomerates are pressed together, they undergo elastic and
plastic deformations and the pull-off (adhesive) force increases with
an increase of the plastic contact area. Fig. 1 shows the contact model
in its full generic form which captures the key elements of the
frictional-adhesive contact mechanics in that: f0 provides the van der
Waals type pull-off forces; k1 and k2 provide the elasto-plastic contact;
kadh provides the load dependent adhesion; the exponent n provides
the nonlinearity and the resulting contact plasticity defines the total
contact adhesion. Themodel is thus expected to be capable ofmodelling
fine powders to study phenomena such as agglomeration, attrition and
flow.

The schematic diagram of normal force–overlap (fn–δ) for this
model is shown in Fig. 1. When n = 1 the model becomes linear
(Fig. 1b) and similar to existing contact models [14,32,37]. The linear
version of the contact model is used in this study. The details of the con-
tact model are presented elsewhere [28,29].

This contact model has been implemented through the API in
EDEM® v2.3, a commercial DEM code developed by DEM Solutions
Ltd. [4]. The total contact normal force, fn, is the sum of the hysteretic
spring force, fhys, and the normal damping force, fnd:

f n ¼ f hys þ f nd
� �

u; ð1Þ

where,u is the unit normal vector pointing from the contact point to the
particle centre. The force–overlap relationship for normal contact, fhys, is
mathematically expressed by Eq. (2).
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The normal damping force, fnd, is given by:

f nd ¼ βnvn ð3Þ

where νn is the magnitude of the relative normal velocity, and βn is the
normal dashpot co-efficient expressed as:

βn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m�k1

1þ π
ln e

� �2
s

ð4Þ

with the equivalentmass of the particlesm* defined as (mimj /mi+mj),
where m is the mass of the respective particles, and the coefficient of
restitution e defined in the simulation.

The contact tangential force, ft, is given by the sum of tangential
spring force, fts, and tangential damping force, ftd, as given by:

f t ¼ f ts þ f tdð Þ: ð5Þ

The tangential spring force is expressed in incremental terms:

f ts ¼ f ts n−1ð Þ þ Δ f ts; ð6Þ

where fts(n − 1) is the tangential spring force at the previous time step,
and Δfts is the increment of the tangential force and is given by:

Δ f ts ¼ −ktδt ; ð7Þ

where kt is the tangential stiffness, and δt is the increment of the tangen-
tial displacement.Whilst varying values for the tangential stiffness have
been used in the literature, in this study it is set as 2/7k1 [31]. The tan-
gential damping force is product of tangential dashpot coefficient, βt,
and the relative tangential velocity, vt, as given by Eq. (8):

f td ¼ −βtvt : ð8Þ

The dashpot coefficient βt is given by:

βt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m�kt

1þ π
ln e

� �2
s

: ð9Þ

Fig. 1. Normal contact force–displacement function for the implemented model.
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