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Since particle size distribution can provide crucial information regarding process and product quality, comparing
one distribution with another and with modeled distributions is often necessary. Since only mean and median
distribution values are often used for that purpose, important information may be missing. As such, methods
are required that take into account the entire distribution and do not require modeling the distribution.

The y*-homogeneity test is a nonparametric homogeneity test based on the observed frequencies in the descrip-
tive classes. In this work, we examined if it could be used for comparing particle size distributions and for large
particle numbers. In conclusion, we demonstrate how this statistical test was successfully applied in several

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Controlling particle size distribution (PSD) is essential for many in-
dustrial processes. Particle sizes can vary vastly, from rock debris in geo-
logical sciences to components in the millimeter range in the
construction industry and crystals in the um range (and below) in phar-
maceutical applications [1-5]. Particle size often determines crucial
quality attributes that relate to the processability of intermediates
(e.g., handling and storing of cement, blending of active pharmaceutical
ingredients (APIs) and excipients) and the quality of the final product
(e.g., the strength of concrete or the bioavailability of dosage forms)
[6-11].

Determining a particle size distribution typically involves sampling
from a process stream. Sampling involves a mass reduction, and in
that regard correct sampling of granular materials is challenging [12,
13]. Since positioning of the sampling tool defines the part of process
stream that is sampled and analyzed, it has to be performed meticulous-
ly. Although sampling is generally performed in a non-destructive
matter, sampling of the entire particle population is rarely achieved
due to the huge number of particles and data processing involved [14].

The samples' particle sizes are determined via methods that are suit-
able for the size range in question [15]. There are several approaches to
defining a single characteristic number or size of particles that repre-
sents their size, i.e., called equivalent diameters. Many different equiva-
lent diameters exist, e.g., the diameter of sphere having the same
volume, surface area, sedimentation velocity and many more. The
individual size data for a number of particles are then grouped into
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bins of a certain size range [16-18] called a histogram that determines
a PSD [19,20].

Since the particle size is a continuous variable, the probability of
finding a particle with a certain diameter is zero. However, there is a
finite probability of finding a particle within a certain size range. Al-
though PSDs are regarded as either continuous or discrete distributions
(i.e., histograms), they are only truly continuous in simulated and
modeled cases. Sampled PSDs always originate from a finite number
of particles, leading to a discrete distribution. As a result, experimentally
obtained particle sizes are typically split into size classes covering a cer-
tain range. The number of particles found within this range, compared
to the total number of particles sampled, is the best guess with regard
to the probability of finding a particle within this range [21,22].

A sample determines the number of particles in certain size classes,
i.e, a PSD. A PSD can also be viewed as a multivariate description of the
sample. However, since multivariate representations can be difficult to
handle, simplifications have to be made [23]. Often, only a few relevant
(integral) parameters (or moments), such as the mean, median diame-
ter and the “broadness” of a PSD, are reported. However, this suffices
only if PSDs have a known and common shape [19,24].

Various analytical distributions are used to approximate PSD shapes,
e.g., normal distribution, log-normal distribution and others. PSDs how-
ever can take increasingly complex shapes, either due to combinations
of several particle species, each having their own distribution, or due
to sampling effects (e.g., a size cutoff in the measurement principle).
Such complex PSDs are hard to describe by an analytical formula, and
often only a visual representation of the PSD is informative [22,25].

Often, PSDs are compared with each other, e.g., for quality assurance
purposes or if samples are drawn from the same population to ensure
that sampling is representative and to understand the dependence of
PSD on the sampling location. Theoretical and experimental
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(i.e., discrete and continuous) PSDs have to be compared [26,27]. Com-
paring distributions only based on integral parameters may not reveal
differences between them (see illustration in Fig. 1.). Although a visual
comparison can be more informative, it does not have a comparative
quantity. Another problem associated with comparing PSDs is that
they may be obtained using different measurement techniques [28], in
which case elaborate knowledge of the measurement process and par-
ticle shape is required.

As such, a method of comparing particle size distributions that can-
not be suitably represented via an analytical function, or whose com-
plexity cannot be grasped by summary parameters, would be
advantageous. Hence, a method for comparison that takes into account
the entire distribution rather than the summary statistics only is bene-
ficial. For these purposes, the y?-homogeneity test can be used. This
test is extensively applied in the psychological and medical sciences
[29] or used for comparing cascade impactor profiles [30,31].

We applied the y>-homogeneity test for comparing particle size dis-
tributions of an arbitrary shape. Thus, there is no necessity in calculating
or selecting summary parameters, but the whole distribution is consid-
ered. Furthermore, this test allows to quantify the similarity (or differ-
ence) of PSDs, including consideration of the sample size.

2. Method

The jy*-tests belong to a family of hypothesis tests, from which only
the y*>-homogeneity test will be discussed below. The y*-homogeneity
test is a non-parametric test applied to 2 or more samples described by
2 or more categorical variables, to determine if they originate from the
same population [32-35]. It is a hypothesis test whose null-hypothesis
is: Hyp: All samples are drawn from populations that have the same propor-
tions of observations between classes. In other words, the populations
from which the samples originate are homogeneous, i.e., their size dis-
tributions are identical. Thus, the y?-homogeneity test can determine
if several samples of a limited size represent the same particle size dis-
tribution or if the difference between samples is too large to be ex-
plained by random sampling.

2.1. Prerequisites for the y°-homogeneity test

An agreement between the mathematical and experimental require-
ments for conducting the test will be established first.

The population is defined as the total number of all particles, i.e., in
the investigated process stream, or all particles inside a hopper or a
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Fig. 1. Particle size distribution in three samples. Although their shapes are very different,
they have the same summary statistics: x;o = 1.4, Xso = 5.0, and xgo = 8.6. The line
connecting the actual data points is the interpolated spline setting of Excel (Microsoft
Office 2013).

heap. During the process, samples are obtained containing a reduced
(compared to the population) number of particles. Although the sam-
pled PSDs should be representative of the population, the real PSD of
the population can only be established when measuring all particles of
a population. As such, sampled PSDs are inherently only an approxima-
tion and contain an error.

Correct sampling of process streams is an elaborate task, and numer-
ous recommendations are available in the literature [36]. As a prerequi-
site for the y2-homogeneity test the number of independent samples
must be equal to or greater than 2. Repeated measurements of the
same sample are not considered independent. If there are 2 samples,
one is compared to the other. When there are more than 2 samples,
all of them are compared and a single deviating one will dominate the
outcome of the test (i.e., no distinction is made between reference and
test samples).

Suppose a number of M samples is measured, with sample m
containing a number of N, particles. The particle sizes are distributed
in K different classes, where class k spans within a size region wy,
represented by a mean size value of x,. This results in a particle count
of 1, for class k and sample m, and a total test size of N =) ,Nyy =
2 m 2 ke

Observations (i.e., size measurements of single particles) should be
unique and distinct. This is usually the case in particle size measure-
ments. Every particle is only measured once, resulting in a single size
value of this particle. In sieve analysis, a particle is found on top of a sin-
gle non-passing mesh size. The size of the next particle measured does
not relate to the previous one. Classes in PSDs are generally exclusive
(i.e., not overlapping) and exhaustive (i.e., there is no particle that is
not belonging to a class). The y-test can be applied on any scale, even
non-ordinate (i.e., classes do not have to have an order). Since classes
are categories for describing samples, the specific size and order of clas-
ses is of no importance to the test, and there is a significant amount of
freedom in choosing the classes. For example, certain size classes may
be neglected during an analysis, since (irrelevant) foreign particles
(dust) or measurement uncertainties can obliterate those classes. Fur-
thermore, this enables the pooling of classes, as discussed below.

Since the y>-homogeneity test is based on the frequency of particles
per sample and size class, the absolute number of particles is important.
If ¢, is the relative distributional density of class k and sample m and if
the total number of particles N, in the sample m is known, the number
of observations per class k can be calculated as 1, = ik Wi N

For every particle, the question if it belongs to class k can be an-
swered modally. If a particle belonging to the population is measured
(and hence is now part of sample m), the number of particles in class
k increases by one with probability py, which is the (unknown) fraction
of particles of class k in the total population. Thus, sampling Ny, particles,
the number of particles in class k of sample m follows a binomial distri-
bution and the expected value is <n,;>=pN,, with a variance of
onmkz = Nipr(1 — pi). For large samples, the binomial distribution can
be approximated via a normal distribution according to the Moivre-La-
place theorem with A (<>, 02 ). In this notation, (i, o) indicates
the normal distribution with mean pand variance o?.

The sum of squares of a number of f independent variables
(e.g., sample and particle size class when comparing PSDs, see
Section 2.2.), all of which follow a standard normal distribution
(i.e., N(0,1)), is distributed as the y#(x)-distribution. The parameter f
is generally referred to as the degrees of freedom. For the purposes of
the y*-homogeneity test, a test statistic, termed y?, is calculated from
the experimental data, indicating the difference between the observed
and expected particle numbers. The exact calculation will be shown in
Section 2.2. This x* test statistic is a sum of squared standard-
normally distributed variables and hence follows the y2-distribution.
If the test statistic is much higher than the expected ;(th, which is de-
termined analytically based on the assumption of random sampling,
this excess cannot be explained only by sampling effects and it is
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