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Assuming that the particle movements of fluid–solid mixture occur along continuous but non-differentiable
curves, in the frameworkof scale relativity, the separation processes of the solid components fromheterogeneous
mixtures are analysed. By means of a numerical simulation of “fuzzy” type in the dissipative approximation of
motion of the scale relativity in its non-differentiable hydrodynamic version, it is shown that the separation pro-
cesses imply bothwhatwe call the “relevant dimensions” of the solid components from heterogeneousmixtures
and their positions in the fluid–solid mixture velocity field. The above-mentioned phenomena occur in the tur-
bulence regimes of the fluid–solid mixtures. In the scale relativity dispersive approximation of motion, by
means of space–time cnoidal oscillationsmodes of thefluid–mixture velocity field, it is shown that the separation
process is controlled through the turbulence regimes of the fluid–solidmixtures. In such a situation three scenar-
ios of transition to turbulence via chaos (quasi-periodicity, sub-harmonic bifurcations, and intermittences) are
comparatively given from a theoretical and experimental point of view both for a plasma with complex struc-
tures (in the form of double layers), assimilated with fluid–solid mixtures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many theoreticalmodels have investigated the influences ofmixture
parameters on velocity flows (e.g., the properties of solid particles
[1–4]) or the distribution of solid particles due to the rotational regimes
of these flows in a fluid [5–7]. A review of the numerical simulations of
fluid–solid mixture flows was published by Zhang et al. [8]. The core of
present approach can be safely characterized as a smoothed particle
method [9], whereby the mixture density is smoothed by a procedure
which should be immaterial for the present purpose.

Now, according to the usual concepts [10–12], all of the theoretical
models assume that the dynamics of both the fluid and the solid

particles in the fluid–solid mixtures occurs on continuous but differen-
tiable curves [10,11,13], so it can be described in terms of continuous
and differentiable functions (e.g. density, velocity, temperature fields
etc.). These functions are exclusively dependent on the spatial coordi-
nates and time. In reality, a fluid–solid mixture flow proves to be
muchmore complex. Therefore, the above simplifications cannot be ex-
pected to explain all of the aspects of the flow dynamics. However, this
situation can still be standardized if we consider that the complexity of
interaction processes impose different time resolution scales while the
evolution pattern leads to different degrees of freedom. From this
point of view, we discuss here a complex fluids dynamics [14,15].

In order to develop our theoreticalmodelwe assume that fluid–solid
mixtures with chaotic behaviour can achieve self-similarity (space–
time structures can appear) associated with strong fluctuations at all
possible space–time scales [14–16]. Then, for time scales that prove to
be large when compared with the inverse of the highest Lyapunov ex-
ponent, the deterministic trajectories are replaced by a collection of po-
tential routes. The concept of “definite positions” is replaced by that of
an ensemble of positions having a definite probability density [17–23],
whose mathematical formwill be explained in Section 3. An illustrative
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example in this respect refers to collision processes in a fluid–solid
mixture: between two successive collisions, the particle trajectory is
a straight line that becomes non-differentiable at the impact point.
Considering that all the collision impact points form an uncontrollable
set of points it results that the trajectories become fractals.

Since, in such a context, the non-differentiability appears as a uni-
versal property of fluid–solid mixtures, it seems necessary to create a
corresponding non-differentiable physics. Indeed, if we assume that
the complexity of interactions in the dynamics of fluid–solid mixtures
is replaced by non-differentiability, it is no longer necessary to use the
whole classical “arsenal” of quantities from standard (i.e. differentiable)
physics [10–12].

This topic was systematically developed in [24–26] using the Scale
Relativity Theory (SRT) [20,21]. According to SRT the motion along a
streamline, followed by a jump from one streamline to another in a
Euclidian space, is replaced by motions on continuous but non-
differentiable curves (fractal curves) in a fractal space [17–23,27].
Consequently, the Euclideandynamics offluid–solidmixturewith inter-
actions is substituted by the fractal dynamics of complex fluid free of
any constraints. Complex fluid particles move along continuous but
non-differentiable curves having a double identity: these curves are
both geodesics of a fractal space, and streamlines of the complex fluid.
The dynamics of such a complex fluid can be described using fractal
quantities (fractal density, fractal momentum, fractal energy, etc.),
i.e., functions that depend on spatial coordinates, time and resolution
scales. In this respect, the complex fluid has interesting specific proper-
ties, such as a hysteretic [28,29].

The present paper gives results extending those from [24,26], taking
into account the convection, dissipation and dispersion effects that play
an important role in the flow process of fluid–solid mixture. Two dis-
tinct approximations of motion of scale relativity in an arbitrary con-
stant fractal dimension are considered: the dissipative approximation
which implies the separation process of the solid components from het-
erogeneous mixtures through the “relevant dimensions” of the solid
components and their positions in the fluid–solid mixture, and disper-
sive approximation which implies control of the separation process of
solid components from heterogeneousmixtures through turbulence re-
gimes of the fluid–solid mixtures. In this last case, three scenarios of
transition to turbulence via chaos are comparatively described from
both a theoretical and experimental point of view, for a plasma with
complex structure assimilated with a fluid–solid mixture. Such a flow
process frequently occurs in multi-scale type structures, presenting a
time diffusion scale, a time convection scale, time heterogeneous reac-
tion, etc., e.g., in fluidized bed material systems [30]. Until now, the
problem of the segregation of solid particles from fluid–solid mixtures,
which is mainly related to fluidized bed system applications, has only
been studied using Eulerian–Lagrangian models (continuum equations
to describe the fluid flow [31–33]). In our opinion, the dynamics of
multi-scale-type structures can be properly handled only within the
mathematical formalism of the SRT. It is thus shown that the presence
of convection, dissipation and dispersion induce the specific mecha-
nisms of the mixture separation regimes of solid particles in complex
fluid flows.

The present paper is structured as follows: Section 2 — hallmarks of
non-differentiability and geodesics equations; Section 3— dissipative be-
haviour of the fluid–solid mixture dynamics via non-differentiability,
Section 4 — dispersion behaviours of the fluid–solid mixture via non-
differentiability; Section 5 — experimental validation of the theoretical
model, and Section 6 — conclusions.

2. Hallmarks of non-differentiability. Geodesics equations

Assuming that the curves (fractal, i.e. continuous and non-
differentiable) describing the motions of the complex fluid parti-
cles are immersed in a 3-dimensional space, and that X of components

Xiði ¼ 1;3Þ is the position vector of a point on the fractal curve at the
time t, the fractal field F(X,t,dt), with dt the resolution scale, its total dif-
ferential expansion up to the third order is [34,35]

d� F ¼ ∂F
∂t

dt þ ∇Fd�Xþ1
2

∂2 F
∂Xi∂X j

d�X
id�X

jþ

þ1
6

∂3 F

∂Xi∂X j∂Xk
d�Xid�X jd�Xk:

ð1Þ

The sign “+ ” corresponds to the forward process, while the sign
“−” corresponds to the backward one.

In relations (1) only these terms are finite; any other combinations
containing differentials, dt2, dXidt, dt3, dtdXidXj, dt2dXi are null taking
any asymptotic limit dt → 0(for details see [34,35]).

We note that the first three terms were used only in SRT [20,21] as
well as in non-standard SRT (SRT approachwith arbitrary constant frac-
tal dimension [36–43]). The forward and backward averages values of
(1) take the form:

d� Fh i ¼ ∂F
∂t

dt
� �

þ ∇F � d�Xh i þ 1
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id�X
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þ 1
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* +
: ð2Þ

Supposing that themean value of function F and its derivatives coin-
cide, andmoreover, that the differentials d± Xi and dt are independent,
the average of their products coincides with the product of averages, so
that Eq. (2) become [34,35]

d� F ¼ ∂F
∂t

dt þ ∇F d�Xh i þ 1
2

∂2 F
∂Xi∂X j

d�Xid�X j
D E

þ

þ1
6

∂3 F

∂Xi∂X j∂Xk
d�Xid�X jd�Xk
D E

;

ð3Þ

or using the standard relations [20,21]

d�X
i ¼ d�xi þ d�ξ

i
; ð4Þ

where d±xi is differentiable and resolution scale independent spatial co-
ordinate, and d±ξi is non-differentiable (fractal) and resolution scale
dependent spatial coordinate,

d� F ¼ ∂F
∂t

dt þ ∇F � d�Xþ1
2

∂2 F
∂Xi∂X j

d�xid�xj þ d�ξ
id�ξ

j
D E� �

þ

þ1
6

∂3 F

∂Xi∂X j∂Xk
d�xid�xjd�xk þ d�ξ

id�ξ
jd�ξ

k
D E� � : ð5Þ

Even if the average value of the fractal coordinate d±ξi is null
[20,21]

d�ξ
i

D E
¼ 0; ð6Þ

the situation can still be different for a higher order of fractal coor-
dinate average. Indeed, let's focus first on the averages 〈d±ξid±ξj〉.
If i ≠ j, these averages are zero due to the independence of d±ξi

and d±ξj. So, using the fractal equations [20,21]

d�ξ
i ¼ λi

�
dt
τ

� �1=DF

; ð7Þ

where λ±
i are constant coefficients with statistical meanings (for

details see [18–21]), dt/τ is the normalized resolution scale, with
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