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Confined compression of powders consisting of millimetre-sized granules was studied numerically with the
discrete element method (DEM) and experimentally using a materials tester. A novel contact model was used,
referred to as the extended truncated-sphere model, which is based on a geometrical analysis of the particle
shape coupled with a contact pressure that varies with volumetric particle strain. The model accounts for plastic
particle densification and utilises Voronoi cells to estimate the void space surrounding each particle. Simulations
were performed bothwith andwithout an account of plastic particle densification, using experimentally estimated
values of hardness and literature values of bulk moduli as input. An adequate agreement between simulations
and experiments was obtained for beds of ductile particles, but the correspondence was less satisfactory for
ductile-brittle ones. The results indicate that a residual porosity remained in the particles also at the highest
applied pressures in both cases. It was concluded that the novel extended truncated-sphere model is suitable for
and provides insight into the problem of simulating confined powder compression at large strains. However, reli-
able resultswill likely not be obtained for fragmenting particles unless away be found to describe particle fracture.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A considerable amount of research done in the pharmaceutical area
has during many years focused on reducing the variability of products
such as tablets manufactured by confined compression. It is therefore
of utmost importance to gain anunderstanding of the underlying causes
for the variation. Significant progress has been made by numerical
methods but an improved understanding of the compression process
including essential parameters for accurate descriptions of the various
stages during compression is still needed. A promising and important
tool often used for simulations in the pharmaceutical sciences is the
discrete element method (DEM) [1]. The DEM enables simulations
at the particulate level and uses a soft-particle approach where the
contacts are modelled by a particle overlap.

The most commonly used contact models in DEM simulations of
confined compression of granular materials are of an elastoplastic or a
purely plastic type. Well-known examples include the model proposed
by Storåkers et al. [2] that emanates from a similarity analysis of inelas-
tic contacts, the model put forward by Thornton and Ning [3] that is
based on a truncation of the Hertzian pressure distribution at a certain
yield pressure, and the model of Vu-Quoc and Zhang [4] that utilises
an additive decomposition of the contact radius into elastic and plastic
parts. A more recent example is the model developed by Brake [5].
These models generally predict a largely linear increase in the contact

forcewith increasing strain, except at very small strains, where the elas-
tic Hertzian response makes the force–displacement relation nonlinear.
In addition, simplified hysteretic spring models are sometimes also
used, as originally proposed by Walton and Braun [6] and elaborated
upon by Luding el al. [7]. Such models also predict a linear increase in
force during loading.

However, the inherent assumption of contact independencemade in
the DEM and the aforementioned contact models is not justified at the
large strains occurring during the late stage of compression (exceeding
relative densities of about 0.8) [8,9], rendering simulations of the elastic
compact deformation problematic. This issue has been addressed in
several ways. The analytical model presented by Harthong et al., based
on curve-fitting to a meshed discrete element (MDEM) compression
simulation, satisfactorily described the large strain incompressibility in
DEM simulations [10]. In the model, the change in local relative density
during compression was calculated from the corresponding volume
change of Voronoi cells. This model has further been elaborated upon
by Jerier et al. [11] and Harthong et al. [12]. A related, nonlocal contact
model was developed by Gonzalez and Cuitino [13] who utilised the
superposition principle to infer contact interactions for purely elastic
particles. To model the large strain incompressibility in an average
sense, keeping the notion of independent contacts, a maximal plastic
overlap was introduced in the truncated Hertzian contact model
[3,14]. The maximal plastic overlap defines the particle overlap at
which elastic deformation is initiated [14]. A similar force–displacement
relation was used by Olsson and Larsson [15] (cf. their Fig. 9b) who
interpreted the increased stiffness as resulting from hardening occurring
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at a certainmagnitude of the plastic strain. An analytical model proposed
by Frenning [16] accounts for contact dependence andhighlights the bulk
modulus and the particle hardness as important parameters for describ-
ing the contact pressure evolution at low and intermediate strains. As
originally suggested by Arzt [17], the deformed particle shape was
described as a truncated sphere. The potential of this truncated-sphere
contact model was established by an adequate correspondence to finite
element simulations. The bulk modulus is preferable over the Young's
modulus for defining the particle volume changes as the bulk modulus
provides a measure of the resistance to hydrostatic particle compression.
The plastic hardness is suitable for describing the local plastic deforma-
tion at particle contact. However, the truncated-sphere model accounts
only for the initial particle compression, i.e. before contact impingement
occurs; thus limiting the plastic deformation propensity. To account for
the plastic incompressibility evident at large strains an extension of the
model with Voronoi cells is appropriate.

The aim of this workwas to extend the truncated-spheremodel [16]
so that it can be used in DEM simulations of confined compression
and to compare its predictions of bulk compression to experiments.
Granulated powders comprising millimetre-sized granules of a ductile
(formed from microcrystalline cellulose) or a ductile-brittle (formed
from a mixture of microcrystalline cellulose and lactose) character
were used as model systems.

2. Theory

In our previous work [16], a simplified model of the response of
elastoplastic particles subjected to multiple simultaneous contacts was
proposed. The model rested on two key assumptions, namely that the
deformed particle shape could be approximated as a truncated sphere
and that the contact areas could be translated to contact forces via an ef-
fective hardness H. Although these assumptions resulted in amodel that
adequately captured numerical data for small tomoderate (volumetric)
strains, extensions are needed for large strains for two primary reasons.
Firstly, the contact areas cease to be circular because of contact impinge-
ment and, secondly, the average contact pressure will increase beyond
the hardness as a result of particle confinement. Here, such an extension
is presented that utilises Voronoi polyhedra to estimate the particle vol-
ume and contact areas at large strains. In addition, a modification of the
model that allows for plastic volume reduction of porous particles
is proposed. For simplicity, wewill assume that amean contact pressure
P can be used to relate the contact area to the normal force throughout
the deformation, and hence write

Fi ¼ PSi ð1Þ

where Fi and Si are the normal force on and surface area of contact i, re-
spectively. Eq. (1) represents an effective description that remains valid
even though the contact pressure need not be uniform throughout the
deformation.

Contact pressure: As illustrated in Fig. 1a, we consider the average
contact pressure P to be a function of the volume V of the Voronoi poly-
hedron and identify three regions separated by two limiting volumes V1
and V2. For small volumetric strains, i.e., large values of V (V N V1), the
average contact pressure Pwas put equal toH as in themodel in its orig-
inal form. For large volumetric strains (V b V2), the determination of P
was based on the definition of the bulk modulus κ of the densematerial
constituting the granules, using the Voronoi volume V as an estimate of
the current particle volume. An interpolationwas used for intermediate
volumetric strains (V2 b V b V1). Specifically,Pwas expressed as follows:

P ¼
H if V N V1
H þ K V1−Vð Þα if V2 b V b V1

κ 1−
V
V s

� �
if V b V2

:

8>><
>>: ð2Þ

Here, K and α are constants and Vs = (1 − ϕ0)Vp0 is the volume of
the solid material that constitute the particle (ϕ0 and Vp0 are the initial
particle porosity and volume, respectively). As already indicated, V1 and
V2 denote the upper and lower limits of the region where the contact
pressure is interpolated, respectively.

Assuming that the interpolation ends at a pressure-to-hardness-
ratio β (i.e., P=H ¼ β at V = V2; see Fig. 1a), the limiting volume V2

can be expressed as

V2 ¼ 1−
βH
κ

 !
V s: ð3Þ

If one considers the exponent α as a known parameter, the limiting
volume V1 and the constant K can be determined from the condition
that P and the derivative dP/dV both be continuous at V2, implying that

V1 ¼ 1−
H
κ

 !
αV s− α−1ð ÞV2 ð4Þ

Fig. 1.Dependence of themean contact pressureP on theVoronoi volume V. (a) Schematic
illustration indicating the influence of the effective hardness H and bulk modulus κ using
the parameters β, Vs, V1 and V2 described in the text. (b) Comparison between P as
obtained from Eq. (2) using the parameter values α = 5 and β = 3 (thick solid line) and
numerical results (symbols) from triaxial loadings with different loading rates in the three
spatial directions [16]. Parameter values are indicated in the figure (d= particle size, E =
Young's modulus, ν= Poisson's ratio, σy = yield stress and H ¼ effective hardness).
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