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The present study explores newapproaches to extract Drucker–Prager/Cap (DPC) constitutivemodel parameters
at low and high densities of compacted powders for which it is not possible to get solid, undamaged samples for
model calibration purposes. Extrapolations were carried out by invoking a number of physically plausible
assumptions for high density conditions and the addition of the experimental shear cell testing procedure for
low density extrapolations. The effects of these extrapolations on finite element model (FEM) results of both
die compaction and roller compaction were examined. The sensitivity of the extrapolated DPC parameters on
compaction model results was explored by performing parametric studies for both low and high density extrap-
olations. Examination of die compactionmodel results for low density showed little sensitivity to extrapolations;
however, we are able to show that extrapolations of DPC parameters to low densitymay have a significant effect
on roller compactionmodeling results. Highdensity die compaction FEM simulations reveal a significant effect on
theway inwhich the DPCmodel parameters are extrapolated to high density. Amethod of extrapolating the DPC
model parameters to high density is presented in this work. The work presented here demonstrates the signifi-
cance of properly calibrating the DPC model at low and high densities and provides the necessary guidance for
this purpose.

© 2015 Published by Elsevier B.V.

1. Introduction

Finite element based continuummechanics modeling is a common
tool used for predicting the behavior of powder material during com-
paction processes [1–5]. The most accepted phenomenological model
formodeling the compaction ofmetal, ceramic, andmore recently phar-
maceutical powders, is the Drucker–Prager/Cap (DPC) plasticity model
[6]. Owing to its popularity is the ability to calibrate the model from a
small number of experiments. To obtain these experimental inputs,
generally the calibration of the DPC model requires cylindrical flat-
faced compacts over as large of a relative density range as possible.
When implementing the DPC model into the finite element method,
however, it is necessary to provide the material parameters for the full
range of relative densities from the initial relative density, RD0, up to
the fully dense material, RD= 1. Experimental data can only be obtain-
ed for the range of relative densities within which intact specimens can
be obtained, thus making it necessary to extrapolate the material
parameters outside this range. These extrapolations are subject to the
risk of producing results that may be inaccurate.

The objective of this paper is to (1) propose a methodology of
extrapolating the DPC parameters to regimes that are not accessible

experimentally so that the whole range of densities from RD0 to
RD=1 is covered and to (2) evaluate the sensitivity of FEM compaction
model results on the extrapolated parameters.

The proposed methodology is based on in-die results and the incor-
poration of shear cell experiments for the extrapolation of the failure
surface DPC parameters to low density and the implementation of a
porous plasticity model for the extrapolation of the cap surface DPC
parameters to high density. In addition, we demonstrate for the first
time, that extrapolation of DPC parameters at low density is extremely
important for simulations of rolling compaction.

2. The DPC constitutive model

The DPC model provides an inelastic hardening mechanism that ac-
counts for plastic deformation during compaction and volume dilatancy
when thematerial yields in shear. Central to this model is the yield sur-
face shown in Fig. 1, which is divided into two principal segments: a
shear failure surface Fs that describes the behavior of the powder
under low hydrostatic pressure, and a cap surface Fc that describes
hardening behavior and densification of the powder. In the p–q plane,
the shear failure surface is represented simply as a straight line and is
defined by

Fs ¼ q−d−p tan βð Þ ¼ 0 ð1Þ
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where p is the hydrostatic stress, q is the von-Mises effective stress, β is
the failure line angle, and d is the cohesion. The cap yield surface
describing the densification of the powder is an ellipse given by

Fc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−pað Þ2 þ Rqð Þ2

q
−R dþ pa tan βð Þ ¼ 0 ð2Þ

where R is a measure of the eccentricity or shape of the ellipse, and pa is
the point along the p-axis that represents the intersection of the shear
and cap surfaces and is termed the evolution parameter. As thematerial
densifies the yield surface shown in Fig. 1 expands and the evolution of
this expanding yield surface is described by the hardening law pb as a
function of the volumetric plastic strain εvolpl = ln(RD / RD0), where pb
is the hydrostatic yield stress. The four material parameters d, β, R and
pb are considered to be functions of the out-of-die relative density. A po-
tential surface that dictates the plastic flow of the material under stress
is also uniquely defined by these parameters and is associated on the
cap and non-associated with the failure yield surface [6]. The overall
flow potential is formed by two elliptical portions. The elliptical flow
potential surface in the cap region is identical to the cap yield surface
and is given by

Gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−pað Þ2 þ Rqð Þ2

q
−R dþ pa tan βð Þ ð3Þ

and the other non-associated elliptical portion in the failure surface
region is given by

Gs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa−pð Þ tan β½ �2 þ q2

q
: ð4Þ

The elliptical flow potentials Gc and Gs given by Eqs. (3) and (4) pre-
dict densification (increase in RD) and volume dilatancy (decrease in
RD) respectively in the corresponding regions of the hydrostatic
pressure above and below pa.

2.1. DPC model calibration

A practical calibration of the constitutive model is achieved by the
series of experiments shown in Fig. 1, where diametral compression,
axial compression, and die compaction experiments are employed.
For completeness we describe briefly the parameter identification of
the DPC constitutive model. For more details see e.g., [1,7,8]. The

calibration of the DPC model is achieved by the determination of the
four independent parameters d, β, R, and pb (pa can be determined
from these parameters), which can be obtained from a number of pos-
sible experimental procedures. The die compaction experiment requires
a fully instrumented die so that both axial and radial stresses are
measured, and allows for the determination of R, and pb provided that
d and β are known.

Cohesion d and internal friction angle β for a particular level of rela-
tive density are obtained via diametral and axial compression strength
tests of cylindrical compacts. The diametral compression strength test
is used to probe the tensile strength of compacts [9–12] and is often
referred to as the “Brazilian disk test”. The mathematical expression
developed by Hertz [13] for thin elastic disks under point loading is
commonly used for this measure and is given by

σT ¼ 2PT

πDt
ð5Þ

where PT is the load at failure, D is the diameter of the cylindrical sam-
ple, and t is the thickness. The stress state in p–q space is given by p ¼
2σT=3 and q ¼

ffiffiffiffiffiffi
13

p
σT for diametral compression. Similarly, the axial

compression strength test is carried out by axially pressing a cylindrical
compact that provides the strength of the material in simple compres-
sion and is given by

σC ¼ PC

A
ð6Þ

where PC is the load at failure and A is the cross sectional area of the
cylindrical compact. The stress state in p–q space for axial compression
is given by p= σC/3 and q= σC. The cohesion and internal friction are
defined in terms of diametral and axial compressive strengths by

d ¼
σCσT

ffiffiffiffiffiffi
13

p
−2

� �
σC−2σT

ð7Þ

β ¼ tan−1 3 σC−dð Þ
σC

� �
: ð8Þ

Diametral and axial compression strength tests require intact com-
pacts that can be handled with little or no damage. This requirement

Fig. 1.Modified Drucker–Prager/Cap model: yield surface in p–q plane with experimental procedures for determining the shear failure surface Fs and the cap surface Fc.
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