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Due to the fact that the viscosity of nanofluids can be affected by many factors, it is difficult to establish an
accurate prediction model using traditional model-driven methods. To address this problem, a new viscosity
prediction approach based on radial basis function (RBF) neural networks is proposed in this paper. Two RBF
neural networks are proposed, one with 5 input variables, the other with 4 input variables. Both models take
into account the effects of nanoparticle volume concentration, nanoparticle diameter, nanoparticle density and
the viscosity of base fluid, while the 5-input model also considers the effect of temperature. Two different
types of nanofluids, namely Al2O3–water and CuO–water, are used to evaluate the effectiveness of the proposed
models. The comparisons demonstrate that the predicted viscosity of RBF neural networks agree well with the
experimental data, which outperforms many existing theoretical and empirical models. The results also show
that the prediction performance of RBF neural networks can be further improved when the temperature is
added as an input variable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the ever-increasing demands in performance and compactness
of heat exchange devices, different heat transfer technologies have been
developed by increasing the heat transfer area or using efficiently
heat transfer structure [1]. However, the performances of these
enhancement approaches depend much on manufacturing technolo-
gies. Heat transfer fluid is another key factor that affects the heat
transfer performance. Conventional heat transfer fluids (such as water,
ethylene glycol and oil) have relative poor thermal conductivity in
comparison with metal or metal oxide [2]. Considered as the new
generation of heat transfer fluid, nanofluids [3] is a kind of special
solid–liquid suspensions consisting of the conventional heat transfer
fluid and different nanometer-sized particles (such as copper (Cu),
copper oxide (CuO), aluminum oxide (Al2O3), titanium dioxide (TiO2),
silica (SiO2), gold (Au), silver (Ag), or carbon nanotube). Over the past
decade, many investigations have found that nanofluids had superior
heat transfer performances [4–11]. For example, Xuan and Li [4]
presented an experimental investigation on the convective heat transfer
andflow feature of Cu–water nanofluids. Their results indicated that the
suspended nanoparticles could enhance the heat transfer performance
of base fluid, and more than 39% heat transfer enhancement was
obtained at 2% nanoparticle volume concentration. Yu et al. [5] reported
that the heat transfer performance of base fluid could be increased

about 15%–40% by using nanofluids as heat transfer fluid. With the
superior characteristics of nanofluids, some researchers attempted to
enforce the heat transfer process with nanofluids, which brings a new
chance to enhance the heat transfer [12].

The thermophysical parameters are the basic parameters of
nanofluids that can reflect the flow and heat transfer performance of
fluids. Nowadays, the specific heat and density of nanofluids can be
calculated accurately according to the principle of energy conservation
and mass conservation [13]. However, existing studies have difficulty
in explaining the thermal conductivity and viscosity enhancement
mechanism of nanofluids, which may slow down the further develop-
ment of nanofluids. As a very important thermophysical parameter,
viscosity can describe the internal resistance of nanofluids to flow
[14]. In industrial applications, both the pumping power and convective
heat transfer coefficient are influenced by viscosity [15]. Therefore, it is
very necessary to study the viscosity of nanofluids for future under-
standing of the rheological behavior and stability of nanofluids [16].

In recent years, many experimental and theoretical investigations
have been conducted to study the viscosity of nanofluids. Mahbubul
et al. [14] and Sundar et al. [16] reviewed the latest developments on
the viscosity of nanofluids from different analyses of experiment and
theory. Through their studies, it was found that the viscosity of
nanofluids could be enhanced in comparison with that of base fluid
and affected by nanoparticle volume concentration, temperature,
nanoparticle size, nanoparticle properties and base fluid. However, the
specific influence mechanism of each factor is still not very clear and
there are also some inconsistencies in existing literatures. For example,
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the results obtained by Prasher et al. [17], Garg et al. [18], Rea et al. [19],
Maïga et al. [20] and Godson et al. [21] showed that the viscosity of
nanofluids could increase linearly with the increase of nanoparticle
volume concentration, while some investigations [22–24] observed a
nonlinear trend. In addition, many researchers reported the viscosity
of nanofluids decreased non-linearly with the increase of temperature
[15,25,26]. However, others showed that the relative viscosity of
nanofluids was independent of temperature [17,22,27]. Furthermore,
some studies [17] showed that the size of nanoparticle did not have a
significant impact on the viscosity of nanofluids. However, many
researchers [25,28,29] found that nanoparticle size was very important
to determine the viscosity of nanofluids and viscosity could increase
with the decrease of nanoparticle size.

To effectively predict the viscosity of nanofluids, many theoretical
models and empirical correlations have been suggested in the litera-
tures. Based on the assumption of a linearly viscous fluid containing
suspensions of spherical particles, Einstein'smodel [30] can be effective-
ly used to predict the viscosity of nanofluids at very low nanoparticle
volume concentration (≤0.02%). Considering the effect of the addition
of one solute-molecule, Brinkman [31] extended the Einstein's viscosity
model to a moderate nanoparticle volume concentration (up to 4%) in
1952. Graham [32] proposed the viscosity model for nanofluids with
the effects of nanoparticle size and interparticle spacing. Besides, taking
into account the effect of liquid layer, Yu and Choi [33] developed a new
model to express the viscosity of nanofluids. However, there is no
appropriate theory to obtain the thickness of liquid layer so far. In
order to improve the prediction accuracy of the theoretical models,
the effects of Brownianmotion on the viscosity of nanofluidswere stud-
ied by Batchelor et al. [34] andMasoumi et al. [35]. In addition, Lundgren
et al. [36] and Frankel et al. [37] also developed theoretical models to
calculate the viscosity of nanofluids based on the Einstein's model.
Due to the effects of various uncertain factors, most of theoretical
models are only suitable for predicting the viscosity of nanofluids at
very low nanoparticle volume concentration and cannot describe the
viscosity of nanofluids exactly in a wide range of nanoparticle volume
concentration. In order to solve this problem, different empirical
correlations were developed based on a large number of experimental
data. For example, Tseng and Lin [38] presented an exponential correla-
tion for TiO2–water nanofluids considering the effect of nanoparticle
volume concentration on viscosity. The viscosity of two water-based
nanofluids consisting Al2O3 (36 nm, 47 nm) and CuO (29 nm) nanopar-
ticles were measured by Nguyen et al. [39,40] and then they proposed
the empirical correlations considering the effects of nanoparticle
volume concentration and temperature. Besides, many other correla-
tions also were developed to represent the effect of temperature on
the viscosity of nanofluids. For instance, a correlation between temper-
ature and viscosity for pure fluids was proposed byWhite [41] in 1991.
Furthermore, Abu-Nada et al. [42] and Masoud Hosseini et al. [43]
respectively developed different viscosity correlations based on the
experimental data of Nguyen et al. [39,40] for Al2O3–water nanofluids
by taking into account the effects of both nanoparticle volume concen-
tration and temperature. Although the effects of some factors such as
temperature, nanoparticle volume concentration, nanoparticle size,
the Brownian motion and aggregation of nanoparticles have been
discussed, the investigations indicated that therewere still no common-
ly accepted theoretical model and empirical correlation for the predic-
tion of viscosity of all nanofluids with respect to temperature, base
fluid, nanoparticle type, volume concentration and size. Hence, there
is a need to find an alternative approach that is able to provide a quick
and accurate solution to viscosity prediction of nanofluids.

Artificial neural networks (ANNs) is oneof the data-drivenmodeling
approaches, which has a strong nonlinear mapping ability and can
approximate any nonlinear model theoretically [44]. As a black box
model, ANN can approximate the relationships among input and output
variables involved in a physical process. Nowadays, ANN has become
increasingly popular for predicting the thermophysical properties

(mainly thermal conductivity) [45–53] and thermal behavior [54] of
nanofluids due to its high speed, simplicity and large capacity.

In this paper, a novel viscosity prediction approach based on RBF
neural networks is proposed as an alternative to the model-based
approach to provide quick and accurate viscosity prediction of
nanofluids. Considering the advantages of RBF neural networks, the
modeling method based on RBF neural networks is introduced firstly.
Then, according to the available experimental measurements from
literatures, two different RBF neural networks (a 5-input model and a
4-input model) are proposed for predicting the viscosity of two most
common nanofluids, which are Al2O3, CuO and with water as base
fluid. Finally, the obtained prediction results by RBF neural networks
are comparedwith the experimental data andmany existing theoretical
models to evaluate the prediction performance of the proposedmethod.

2. Modeling method based on RBF neural networks

As a kind of feed-forward networks, RBF neural networkswere first-
ly introduced into the literature by Broomhead and Lowe in 1988 [55].
Compared with BP neural networks which are based on a stochastic
approximation method, RBF neural networks can be regarded as a
curve-fitting problem in a high dimensionality space. It can approxi-
mate arbitrary continuous function with arbitrary precision [56].

RBF neural networks generally have a three-layer feed forward
architecture with an input layer, a hidden layer and an output layer,
which is illustrated in Fig. 1. The input layer, consisting of n input
nodes, is responsible for propagating the input vector to the hidden
layer. The hidden layer is used to transform the input from the input
space to the hidden space which is of higher dimensionality than the
input layer [57]. Different from other neural networks, each node in
the hidden layer of RBF neural networks is centered at a particular
point with a given radius and calculates the distance between the
input vector and its own center [58]. Then, the calculated distance is
transformed using the basis function. The output from each node in
the hidden layer is multiplied by its connection weight and then fed
into the output layer. Finally, the output layer gives the final responses
by linearly summing up all the outputs of the hidden layer.

Essentially, the RBF neural networks is a mapping in Euclidean
space: T : Xn → Yq. The output of the output layer can be formed by a
linear combination of the hidden layer responses, which is defined as
follows [59].

yk ¼
Xm
i¼1

ωikRi Xð Þ; k ¼ 1;2; ⋯; qð Þ ð1Þ

where X is the input vector, yk ∈ Yq is the output of kth output layer
node,Ri(X) is the response of ith hidden layer node,ωik is the connection
weight between the ith hidden layer node and the kth output layer
node, m is the number of the hidden layer nodes and q is the number
of the output layer nodes.

The response of the hidden layer node is determined by the radial
basis functions. Gauss function [59] is selected as the activation function
in this paper.

Ri Xð Þ ¼ exp − X−cik k2
2σ2

i

 !
; i ¼ 1;2; ⋯;mð Þ ð2Þ

where ‖‖ is the Euclidean distance, ci and σi are the center and width of
the ith RBF, respectively.

From Eq. (2), it is clear that Ri(X) can obtain the maximum value
when X = ci. And Ri(X) decreases with the increase of ‖X − ci‖. There-
fore, only the input vector X that is near the center of the radial basis
function can activate the nodes of the hidden layer.

An unsupervised learning stage is often used for adjusting the
parameters of the hidden layer including RBF center ci and width σi,
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