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Various types of mesoscopic structures form in jammed granular materials due to the self-organization of their
constituent particles. Internal structural degrees of freedomare introduced in addition to the translational degree
of freedom, and both impact the intrinsic properties of granularmaterials from its constituent ordinary objects. In
this study, we perform numerical simulations of plane shear granular flows confined with a constant pressure.
Using the radical tessellation method, we investigate the temporal and spatial evolutions of granular structures.
The simulation results show that the degree of local fivefold symmetry (LFFS) is a unique structural indicator due
to its significant spatial heterogeneity and dramatic variancewith shearing. In the steady state, regionswith small
LFFS possess large linear velocity gradients, large angular velocities, and consequently largefluctuations in kinetic
energy and elastic energy. Thus, LFFS may link the internal structures and dynamic properties of granular mate-
rials. Inspired by this spatial distribution scenario consisting of LFFS and energy, we propose a structural unit
composed of a strong force network (SFN) and aweak force network (WFN). The SFN has a high shear resistance
that acts as the elastic backbone that supports the entire matrix of a granular assembly, whereas the WFN with
high energy dissipation consists of embedded “inclusions” among the SFN. This structural analysis aids theunder-
standing of the complex phenomena of granular materials and provides insight into the mechanisms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Some particles self-organize into various types of coherent
structures, such as vortices and force networks, due to their discrete
and dissipative nature, which indicates that such particles have a
pronounced short-range order but no long-range structural order
[1]. Such mesoscopic structures create the unique properties of
granular materials not present in other materials, and are depen-
dent on the extent of mechanical loading (e.g., shear rate or confin-
ing pressure as indicated by jamming phase diagrams [2], [3]).
Examples include elasto-plastic granular solids, Herschel–Bulkley
type granular flows, or combinations of the two. When in a solid state,
each particle of a granular assembly stays in a mechanical balance
with its local neighbors [4]. However, the packing of cohesionless
spheres with a finite value of surface friction μ is hyper-static except
at the isostatic limits when μ=0 or μ→ ∞. This means that, for a single
granular packing,manydifferent sets of force networks exist that satisfy
the force balance on each particle. Thus, the force network ensemble
(FNE) has proven to be a useful tool for studying the stress states of stat-
ic granular packings [5], [6]. Under loading, particles are propelled to
move, which causes consequent dramatic evolutions of internal struc-
tures and leads to the sticks and slips observed in stress and nonaffine
deformations due to particle rearrangements [7], [8]. One major
challenge is how to effectively characterize the internal structures and

extract the key structural features relevant to the fundamentals of gran-
ular properties. Moreover, understanding the evolution of structures
would certainly be of considerable helpwhen describing and predicting
natural geophysical hazards [9], particularly the frequent granular-type
debris flows that occur in the mountainous areas of Southwestern
China.

Extensive numerical and theoretical efforts have been devoted to
studying granular structures. Under external loading, forces are trans-
mitted from one particle to the next via particle contact [10], which
forms an inhomogeneous contact network [11]. Sanfratello et al. [12]
developed a magnetic resonance elastography (MRE) technique to ex-
perimentally investigate the force chain structure within a densely
packed 3D granular assembly. The force network was postulated to
play a key role in controlling the mechanical responses of the granular
system [13]. There have also been numerous attempts to characterize
such a contact network [10], [14]. Instabilities emerge atmultiple length
scales in a deformed granular material and the buckling of force chains
is a prevalent source of instability, for which a structural mechanical
model was developed by Tordesillas et al. [15], [16].

There are a few parameters that are often used to measure the
structural features in granular matter. The pair distribution function
(PDF) is a pair correlation representing the probability of finding a
particle as a function of distance r from an average center particle,
where the structural information is embedded in the peak position,
peak width, and relative intensity. Conventionally, the configuration
of the nearest-neighbor shell, which contributes to the first peak in
the PDF, constitutes the short-range order, whereas the structural

Powder Technology 288 (2016) 55–64

⁎ Corresponding author.
E-mail address: qcsun@tsinghua.edu.cn (Q. Sun).

http://dx.doi.org/10.1016/j.powtec.2015.10.038
0032-5910/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2015.10.038&domain=pdf
http://dx.doi.org/10.1016/j.powtec.2015.10.038
mailto:qcsun@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.powtec.2015.10.038
http://www.sciencedirect.com/science/journal/00325910
www.elsevier.com/locate/powtec


features beyond the first peak to a distance of up to several radii, are
referred to as the medium-range order. At larger r, the PDF gradually
converges to unity, which means that no long-range order/correla-
tion exists [17], [3]. One can perform Fourier transformations to ob-
tain the PDF in real space, with the structure factor measured in an
X-ray or neutron experiment [18]. The weakness of PDF is that the
detailed three-dimensional information is lost as a result of statisti-
cal averages and it does not provide much information about the to-
pology of the local structures in the particle-size scale [19]. As the
long-range order rapidly decreases in a random packing, the local
structures near each particle are probably the most effective
mesoscopic characterization of the packing. The coordination num-
ber (CN) is the number of particles that contact a given center parti-
cle. A low CN value is common for loose packing, while a high CN is
expected for dense packing [20], [21]. However, CN only considers
the cluster of contacting particles and does not reflect any topologi-
cal information of granular materials. The Voronoi tessellation is a
scheme to divide a 3-D space into cells centered by each particle. It
is well established that the structure of a packing can be quantified
in terms of the metric and topological properties of such a tessella-
tion. This type of analysis can provide much more detailed informa-
tion than the one-dimensional PDF and CN analyses [22]. However,
Voronoi tessellation is not adequate for polydispersed particles be-
cause it may cut the larger spheres; moreover, touching large
spheres are not always neighbors. An alternative approach is radical
tessellation in which the bisecting plane is replaced by the radical
plane (i.e. all of the points in the radical plane have the same tangent
length), which has been easily implemented with polydispersed
granular systems [23], [24]. Moreover, the topological graph theory
has been used to explore the order structures of granular materials
[25].The analysis of the channel size distribution, based on the local
neighbor correlation of four particle positions, is shown to be useful
in distinguishing states of hard sphere systems [19].

In addition to these regular structural parameters, many indicators
related to the mechanical properties of metallic glasses (MG) have
been proposed, such as the shear transformation zone [26], [27], free
volume, and local potential energy [28]. Atomic symmetry is a general
concept found with glass-forming alloys in which both local five-fold
and translational symmetries are present [29]. Nuclear magnetic reso-
nance (NMR) experiments have shown that local cluster symmetry
plays an important role in the glass-forming ability of MGs [30]. Molec-
ular dynamics studies have also identified the unique behavior for the
Voronoi pentagons during the quenching process [28]. Peng et al. indi-
cated that the degree of local fivefold symmetry (LFFS) was crucial for
understanding the structural relaxation and mechanical properties of
MGs [31]. These studies on the structure of metallic glasses indeed
shed insight into discovering the key features of short-to-medium
range order, and help to identify the underlying physical principles
that constitute the structural basis of granular properties [17].

In this work, we investigate the statistical information of granular
structures, and quantify the temporal and spatial evolutions of the
structures using radical tessellation. The focus of this work is the role
of local fivefold symmetry. In the next section, we describe the numer-
ical model used for our simulations. Section 3 shows the temporal and
spatial evolutions of the structural parameters such as the topological
properties and the metric properties. Section 4 primarily discusses the
LFFS and its connection to other kinetic parameters, and in Section 5
we propose a new structural unit in terms of the LFFS and energy
distributions.

2. Numerical model

Here, plane shear is modeled in its simplest flow configuration,
which consists of spherical grains sheared between two rough plates
composed of glued spheres [9], illustrated in the left figure of Fig. 2.
The confining pressure P remains constant by employing a servo

mechanism, i.e. a vertical motion of the upper wall at speed vw = min
(vmax, (P - Pw)η), where vmax is the prescribed maximum velocity, η is
a viscous damping parameter, and Pw is the normal stress exerted by
the grains on the moving wall. The steady state corresponds to
〈Pw〉= P, and periodic boundaries are applied in the x and y directions.
In this work, the gravity is ignored in comparison with the confining
pressure. We move the top wall in the y direction at a constant velocity
vy0, while the lowerwall is fixed. The contactmodel we used follows the
Hertz–Mindlin theory [32]. We also adopt Coulomb sliding friction and
damping components related to the coefficient of restitution, asfirst de-
veloped by Tsuji et al. [33] and recently used by Hill and Tan [34].

Fn ¼ �knδ3=2n � ηnδ
1=4
n

_δn ð1Þ

Fs ¼ min �ktδ1=2n δt � ηtδ
1=4
n

_δt ; μ Fn
� �

ð2Þ

where Fn and Fs are the contact forces in the normal and tangential di-
rections, respectively, to the contact plane between two contacting par-
ticles, and δn and δt are the corresponding deformations. The coefficients
in the force model are related to the material properties of the two
contacting particles, as listed in Table 1. As mentioned above, we used
the function presented in Ref. [32] to determine the damping coeffi-
cient,

α εð Þ ¼ � ffiffiffi
5

p
lnεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln2ε þ π2
p ð3Þ

where ε is the restitution coefficient. In this study, the density of parti-
cles was ρ = 1000 kg/m3, the value of inter-particle friction was μ =
0.5, the shear velocity was vy0 = 1 m/s, the maximum velocity applied
along the z-axis was vmax = 0.1 m/s, and the viscous damping parame-
ter used in the formula determining the vertical speed of the upper wall
was η = 0.1. The normal and tangential restitution coefficients were
εn = εt = 0.9, Poisson's ratio was ν = 0.15, and Young's modulus was
E = 100 MPa. Nearly 17,000 spheres with a mean particle diameter
d=0.007mwere initially generatedwith a seed number of 1 in the re-
gion of 0.2 × 0.2 × 0.51 m3. Then, the height of the sample would be
contracted to 0.2m after applying the pressure, P=10 kPa, and the vol-
ume fraction would appropriately achieve 0.57. Note that bi-dispersed
particles with a radius ratio of 1:1.3 and a number ratio of 1:1 were
used to prevent crystallization [2]. Therefore, in Table 1, only the radii
and the masses of the contacting particles may be different and other
parameters, such as Young's moduli and Poisson's ratios, were identical
for contacting particles. Radical tessellationwas adopted to divide the 3-
D space into cells rather thanVoronoi tessellation. In radical tessellation,
the bisecting plane is replaced by the radical plane, with all of the points
having the same tangency length for the two spheres [23]. As shown in
Fig. 1, in the 2-dimensional case, O1 and O2 are the center points of the
sphere 1 and 2 respectively. Points A and C are the tangential points. If B

Table 1
Formulas for calculating stiffness anddamping coefficients in Eqs. (1) and (2). Subscripts 1
and 2 refer to the species of the two particles in contact. Ei, νi, mi and Ri are the Young's
modulus, Poisson's ratio, mass and radius respectively of particle i. Damping coefficient
α can be calculated by Eq. (3).

Variable Formula

kn 4
ffiffiffiffiffiffiffiffi
Reff

p
Eeff =3

kt 8
ffiffiffiffiffiffiffiffi
Reff

p
Geff

ηn α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff kn

q
ηt α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
meff kt

q
Reff (1/R1 + 1/R2)−1

Eeff [(1 − ν1
2)/E1 + (1 − ν22)/E2]−1

Geff [2(1 + ν1)(2 − ν1)/E1 + 2(1 + ν2)(2 − ν2)/E2]−1

meff (1/m1 + 1/m2)−1
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