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Meso-scale structures lead to heterogeneity of gas–solid flows which cannot be properly modeled by homoge-
neous drag models. Heterogeneous drag models have been developed, but there are still some problems with
these heterogeneous drag models. The present work identifies the key reasons why predictions of the QL-
EMMS drag model do not match those of the experimentally based O–S model and then aims to improve the
QL-EMMS model. Since the meso-scale structures are the key reason for the heterogeneities in the two-phase
flows, the influence of the cluster characteristics on the drag force needs to be further understood. The present
work investigates the effects of both the cluster size and the cluster density on the drag function by sensitivity
analyses. Both influences are analyzed to show that the cluster density has a greater effect on the drag force.
Thus, the inaccuracy of the drag model is due to the inaccuracy of the cluster density model with the essential
reasons being the basic concepts in EMMS theory. Then the characteristics of cluster density are further investi-
gated to show that the cluster density curve tends to coincide with the homogeneous 45° line in the extreme di-
lute and dense extremes, and then tends to the heterogeneous state around a local solid volume fraction of εs =
0.1. A mathematical model was then developed to complement EMMS theory.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In fluidized gas–solid two-phase flows, the drag force represents the
strength of the gas–solid interactions and the entrainment of particles
into the gas, which is an obviously important force for two-phase
flows. If the drag force model is not accurate, the two-phase flow simu-
lations will also not be accurate. The classicalWen-Yu [1], Gidaspow [2],
and Ergun [3] drag model and so on are all based on the hypothesis of
homogeneous fluidization. Studies have shown that adopting these
drag models to simulate the fluidized beds result in that the circulating
mass flux is far higher than the experimental data, the particles distrib-
ute uniformly, and also cannot show the typical heterogeneous charac-
teristics like “annulus-core” and “up dilute and bottom dense”,
especially for the fine particle two-phase flow like Geldart [4] type-A
particle. These are as a result of that these drag models are for homoge-
neous flow without consideration of the drag reduction caused by the
heterogeneities.

The solid clusters make the two-phase flow heterogeneous, which
results in a large slip velocity and then a large drag reduction between
the gas and solid particles. Actually, the clusters are a meso-scale phe-
nomenon, with a scale between the scale of a single particle and the re-
actor scale macro-flow which are totally different. Hence, the clusters
are called meso-scale structures.

The existing dragmodels can be divided into homogeneous and het-
erogeneous types. The homogeneous drag models have been shown to
not properly simulate the fluidization process, while the heterogeneous
drag model can better simulate dense gas–solid two-phase flows.

As a multi-scale analysis method, the Energy Minimization Multi-
scale theory (EMMS) [5] focuses on the suspension of particles in the
flow and the transport of energy from the gas to the particle phase in
the fluidization process, while the Euler–Euler approach (Two-Fluid
Model) involves only mass and momentum balances that are incom-
plete because they do not consider the drag reduction in the heteroge-
neous flow states. The drag model based on EMMS theory can predict
a drag reduction considering the heterogeneity. Therefore, the EMMS
drag model that determine the drag function, β, can be theoretically
regarded as an additional boundary condition coupled with the Euler–
Euler approach to determine the drag force term [6]. After the success
of the first modification by Xiao et al. [7], a series of heterogeneous
dragmodels based on the EMMSmethod have been developed and ver-
ified in the past decade to describe to some extent the drag reduction
caused by meso-scale structures in the flows [7–11], as shown in Fig. 1.

The O–S model [12] is a heterogeneous drag model developed from
experiment data which is an important benchmark to evaluate theoret-
ical dragmodels [13]. Fig. 1 compares the drag function distributions, β,
for several typical heterogeneous drag models [8–10] and the O–S
model. The various heterogeneous drag models are indicated by the
first author's name. The existing heterogeneous drag curves are quite
different from the O–S curve both qualitatively and quantitatively. The
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turning points in the drag function curves cannot be explained physical-
ly which indicates the problems in the existing EMMS drag models.

Though the existing heterogeneous drag models can apply well in
limited individual cases, they cannot generally applied to other operat-
ing conditions. The QL-EMMS [8] drag model is closer to the O–S model
than theothermodels, but still has similar problems. In addition, theQL-
EMMSmodel has little variation at different conditions which is unrea-
sonable, as shown in Fig. 2 where the O–S drag curves are quite
different.

The object of the present research is to clarify the essential reasons
why the QL-EMMS model disagrees with the O–S model and find a
way to improve it. Since the meso-scale structures, the clusters, are
the major reason causing the flow heterogeneities and the drag reduc-
tion, the effects of the clusters need to be investigated in terms of the
cluster size, dcl, and the solid concentration in cluster (short for cluster
density), εsc. The effect of the cluster characteristics on the drag force
must be known and then a model must be developed to relate the
drag force in heterogeneous flow to the cluster characteristics. Re-
searchers have paid much attention to the effect of cluster size and
have thought that the cluster size has a key effect on the drag force.
Thus,many researchers have developedmany cluster sizemodels to im-
prove the drag model. However, there have been few studies on the ef-
fect of cluster density. Thus this study investigates the effects of both the
cluster size and the density on the drag function. The effects are

compared and to determine which factor has a greater effect on the
drag force to develop ways to improve the QL-EMMS drag model.

2. QL-EMMS model

According to themulti-scale analysis, a heterogeneous fluidizedflow
was divided into three phases: the dense phase, dilute phase and inter-
phase in the EMMS theory [5]. Based on the basic EMMS theory, the QL-
EMMSmodelwas developed by considering theparticle accelerations in
dense and dilute phases. The QL-EMMSmodel [8] includes 10 variables,
7 basic equations and 1 extremal condition, which is a constrained non-
linear programming problem. The 10 variables are: the solid concentra-
tion in dense phase (εsc) and dilute phase (εsf), the superficial fluid
velocity in dense phase (Ugc) anddilute phase (Ugf), the particle velocity
in dense phase (Upc) and dilute phase (Upf), the acceleration of particle
in dense phase (ac) and dilute phase (af), the volume fraction of dense
phase (f) and the cluster equivalent diameter (dcl).Themodel equations
of the QL-EMMS drag model are summarized in Table 1.

Nst represents themass specific energy consumption for suspending
and transporting particles,W/kg, which consists of energy consumption
in the three phases. Formulas (1)–(7) are basic or constrained equa-
tions, which limit the solution domain. Formula (8) is the stability
extremal condition as an objective function which determines the
uniqueness of the solution. The stability condition means that the
two-phase flow tends to reach a stable state when Nst reaches a mini-
mum. The solving process is that first traversal solving the 7 basic equa-
tions to obtain a feasible region, then searching the only solution among
the feasible domain which satisfies the stability condition.

3. Influence of cluster size, dcl, on drag

In actualfluidized gas–solidflows, the cluster shape varies fromhour
to hour, including the cluster, streamer/strand, swarms and sheet, as
shown in Fig. 3. Thus, the cluster size is not simply the diameter of a
spherical cluster and lacks a unified definition (see Fig. 4). The dcl mea-
sured in experiments is always the axial size, while in EMMS theory the
size is an equivalent size for various cluster patterns. The differences in
the cluster size definition result complicate comparisons among clusters
with different shapes.

The existing cluster size models include some empirical models
based on experiments and the cluster size model based on EMMS
theory.

Fig. 1. Comparisons of different EMMS dragmodels (Parameters: ρg = 1.205 kg/m3, dp =
100 μm, μg = 1.848 × 10−5 Pa · s, εs, mf = 0.5, uslip = 1.0 m/s).

Fig. 2. Comparison of QL-EMMS drag model with the O–S model (Parameters: ρg =
1.144 kg/m3, μg = 1.848 × 10−5 Pa · s, ρp = 1714 kg/m3, dp = 76 μm, εs, mf = 0.6).

Table 1
Summary of the QL-EMMS model.

(1) Force balance for the clusters in unit volume of the suspension:
fncFc+niFi= fεsc(ρp−ρg)(g+ac)

(2) Force balance for the dilute phase in unit volume of the suspension:
nfFf=εsf(ρp−ρg)(g+af)

(3) Pressure drop balance between the clusters and the dilute phase:

ðΔp=ΔhÞ f þ ðΔp=ΔhÞi
1− f ¼ ðΔp=ΔhÞc , nf F f þ ni Fi

1− f ¼ nc Fc
(4) Mass conservation for the fluid:
Ug=Ugf(1− f)+Ugcf

(5) Mass conservation for the particles:
Up=Upf(1− f)+Upcf

(6) Definition of cluster equivalent diameter:

dcl ¼
½ Up
1−ε ;max

−ðUmf þ
εmf Up
1−εmf

Þ�g

Nst
ρp

ρp−ρg
−ðUmf þ

εmf Up
1−εmf

Þg
dp

(7) Definition of mean voidage
εs= fεsc+(1− f)εsf

(8) Stability condition
Nst→min,

where,
Nst ¼ ðNstÞc þ ðNstÞ f þ ðNstÞi

¼ ρp−ρg

ρp
g½Ug−

εsc−εsf
1−εg f 2ð1− f ÞU f �
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