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The behaviour of bubble clusters in turbulent conditions has been studied theoretically. The cluster behaviour
wasmodelled based on concept drawn from the related field of bubble breakup. It was assumed that the bubbles
were bridged by particles, so the cohesive strength was determined by the capillary force between the bubbles
and the particles. Two different theories were investigated for the disruptive force from the turbulent liquid:
the shear rate hypothesis of Camp and Stein (1943), and the turbulent fluctuation model arising from
Kolmogorov's theory of isotropic turbulence (Kolmogorov, 1941). It was found that neither method is applicable
in the fragmentation stage. However, in the equilibrium stage, an equation derived fromCamp and Stein's theory
was more realistic than that obtained using Kolmogorov's equation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In froth flotation, air bubbles are introduced to a slurry of ground
particles in water where they collide with the suspended particles.
The hydrophobic particles attach to the rising bubbles and are lifted
up to the surface of slurry. Most flotation models are based on the
collection of particles by individual bubbles. However, there are indica-
tions in the literature suggesting that hydrophobic particles are recov-
ered with the attachment of multiple air bubbles (i.e. [14]). Indeed,
the authors recently observed that bubble aggregates could easily
form in a mechanical flotation cell [1]. Each bubble seemed to be held
to the others by bridging particles that were attached to one or more
bubbles and the shape and structure of the clusters seem to change
significantly with the hydrophobicity of the particles.

Following this observation, the authors carried out the first system-
atic study on the clusters behaviour in a well-controlled turbulent envi-
ronment [5,6]. An apparatuswas used inwhich bubble clusters could be
formed and rise into respectiveflowfields. The changes in the shape and
size were monitored visually. Clusters properties were studied at vari-
ous collector and frother concentrations, and flow conditions. It was
seen that the clusters were relatively fragile, and could be disrupted
by too high a level of turbulence in the cell. The experimental results in-
dicated that a critical impeller speed exists, separating the behaviour of
the bubble clusters into two stages: fragmentation and equilibrium
stages. In the fragmentation stage, at low impeller speeds, the clusters
were loose and filamentous, and as the energy input increased, they
ruptured and re-formed [5,6]. In the second stage, above a critical impel-
ler speed, dense clusters formedwhose sizewas relatively insensitive to

the energy input. Apart from the maximum size of the clusters, their
shape factor (SF) was also examined, which was found from the mea-
sured perimeter and the projected area of the clusters [7]. It was
found that although the clusters became larger at higher collector con-
centrations, the shape factor declined slightly, indicating a more open
structure. Although these studies give an idea about the behaviour of
clusters in flotation cells, at present there is a lack of understanding of
the forces that hold clusters together, and the hydrodynamic conditions
that are most favourable to their creation.

A field where aggregates are formed is the flocculation process for
water and wastewater treatment. In this process fine particulates are
caused to flocculate by the addition of reagents with charged sites that
form bridges between particles in an analogous fashion to cluster for-
mation in flotation, where the particles form bridges between bubbles.
The composition of flocs does not necessarily remain the same. A con-
tinual process of growth and destruction takes place, with the ultimate
diameter occurring when the rate of formation of the flocs equals the
rate of destruction. The steady-state floc size is closely related to the
floc strength and empirical expressions are commonly used to predict
thefloc strength rather than theoretical approaches due to the complex-
ity involved in the process. The maximum floc size in a shear flow is
expressed empirically as dmax = CG−m where G is the average velocity
gradient, C is the strength coefficient andm is the strength constant [2,9,
13].Weused this equation to study thebubble cluster breakup [7], how-
ever the equation did not provide a satisfactory agreement with the
experimental results.

This paper presents a simple theoretical analysis to give insight into
the behaviour of clusters under shear flow. By drawing an analogy be-
tween bubble clusters and bubble/droplet breakup, a model based on
force balance is proposed to predict the maximum stable size of a bub-
ble cluster in turbulent conditions. The cohesive capillary force and the
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detachment forces of hydrodynamic origin are balanced in the model.
An important variable in the model is the shear rate used in the calcula-
tion of the dynamic detachment force. It should be borne in mind that
forces acting on bubble clusters aremore complicated in nature because
clusters contain both bubbles and particles and the forces within clus-
ters are not in an ordered direction. As a starting point, a simple case,
such as two bubbles joined with one particle, was considered.

2. Description of theory

When a bubble is immersed in a turbulent flow, it experiences
turbulent stresses including viscous stresses and dynamic pressures,
which tend to deformor break the bubbles [8]. The same type of stresses
could be considered to act on a cluster of bubbles held together by
bridging particles. In the case of the bubble, the force that resists break-
up is due to the surface tension of the bubble. In the case of the cluster, it
is the internal cohesive forces arising from the capillary force between
the bubbles and the bridging particles. When the disruptive forces
exceed the internal force, the bubble cluster is broken up.

By comparing the disruptive and internal cohesive forces, a model
can be proposed to predict the breakage of bubble clusters. For simplic-
ity, we only consider the case that two air bubbles are connected with
each other by a hydrophobic particle to avoid the effect of structural fac-
tors on the stability of bubble clusters. We will employ the following
equation to express the maximum capillary force between a particle
and a bubble, from Nguyen [12] in the form:

Fc ¼ 2πRpσ sin2 θ=2ð Þ ð1Þ

where Rp is the radius of particle, σ is the gas–liquid surface tension and
θ is the contact angle (see Fig. 1).

The disruptive dynamic pressure force is equal to the dynamic pres-
sure multiplied by the area where the pressure applies, which can be
taken to be the area of cross-section of an individual bubble cluster,
πRc2, where Rc is the radius of cluster. Thus, the dynamic pressure force
can be expressed as:

Fd ¼ πR2
cρlu

2
d=2 ð2Þ

where ρl is the density of fluid, andu2
d is themean square velocity differ-

ence over a distance equal to the diameter of the bubble cluster, dc.

Two assumptions can be made to predict the value of u2
d . Firstly, it

will be assumed that the velocity difference can be calculated by relating
it to the shear rate. If a cluster is in a uniform shearfield, the velocity dif-
ference at opposite ends of a cluster isΔud= Gdc, where dc is the cluster

diameter and G is the shear rate. The shear rate can be calculated from
the equation of Camp and Stein [3] as: G ¼ ffiffiffiffiffiffiffiffi

ε=ν
p

, where ν is kinematic
viscosity, and ε is energy dissipation per unit mass of fluid, which is
given by ε = P0N

3D5/V, where P0 is the impeller power number, N is
the impeller speed, D is the impeller diameter, and V is the volume of
the liquid in the stirred tank. By substituting all parameters, one can
obtain:

u2
d

� �
C
¼ εd2c=ν ð3Þ

where the subscript C of u2
d denotes that this expression uses the Camp

and Stein expression.
By substituting Eq. (3) into Eq. (2), the dynamic pressure force can

be modified to:

Fdð ÞC ¼ πρlεd
4
c=8ν: ð4Þ

The value of u2
d can also be obtained according to Kolmogorov's

theory of local isotropy [10]. It is assumed that at sufficiently high
Reynolds numbers (N10,000) themicro-scale components of the turbu-
lent velocity fluctuations are isotropic and therefore independent of the
main flow and the generating mechanism of the flow. In the case of a
droplet in an isotropic turbulent flow, that is much larger than the
micro-scale, the mean square of the relative flow velocity over a dis-
tance equals to the diameter of droplet d is independent of viscosity,
which can be expressed as [15]:

u2
d

� �
K
¼ 2ε2=3d2=3c ð5Þ

where the subscript K of u2
d denotes that this expression uses

Kolmogorov's theory. An analogy can be drawnwith the case of a cluster,
where the cluster size is much larger than the microscale, in which case
dc is the diameter of the cluster.

By substituting Eq. (5) into Eq. (2), the dynamic pressure force can
be modified to:

Fdð ÞK ¼ πρlε
2=3d8=3c =4 ð6Þ

and it can be observed that the values of Fd depend in different ways on
the key variables ε and dc.

For real systems, one bubble may be connected with many particles
so that many joints may be broken up at the same time. If the average
number of broken contacts of clusters isNc it would be reasonable to as-
sume that for stability, the dynamic pressure force should be balanced
by Nc times the capillary force. By balancing of Eqs. (4) and (6) with
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Fig. 1. Bubble cluster in turbulent flow. Dynamic pressure force due to the flow velocity difference at opposite ends of the cluster causes the cluster deformed and breakup (a). At steady-
state this force is balanced by the capillary force which is function of the particle radius Rp, the gas–liquid surface tension σ and the contact angle θ (b).
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