
Hybrid parallelization of the LIGGGHTS open-source DEM code

R. Berger a,⁎, C. Kloss c, A. Kohlmeyer b, S. Pirker a

a Johannes Kepler University Linz, Department on Particulate Flow Modelling, Altenbergerstrasse 69, 4040 Linz, Austria
b College of Science & Technology, Temple University, Philadelphia, PA, USA
c DCS Computing GmbH, Altenbergerstr. 66a - Science Park, 4040 Linz, Austria

a b s t r a c ta r t i c l e i n f o

Article history:
Received 7 November 2014
Received in revised form 10 February 2015
Accepted 14 March 2015
Available online 24 March 2015

Keywords:
LIGGGHTS
Discrete Element Method
Hybrid parallelization
MPI
OpenMP

This work presents our efforts to implement an MPI/OpenMP hybrid parallelization of the LIGGGHTS
open-source software package for Discrete Element Methods (DEM). We outline the problems encountered
and the solutions implemented to achieve scalable performance using both parallelization models. Three case
studies, including two real-world applications with up to 1.5 million particles, were evaluated and demonstrate
the practicality of this approach. In these examples, better load balancing and reducedMPI communication led to
speed increases of up to 44% compared to MPI-only simulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

LIGGGHTS is an open-source software package used for numerical
simulation of granular materials and of heat transfer [1]. It is a DEM
[2] code implemented on top of LAMMPS [3], a molecular dynamics
code developed by Sandia National Laboratories. Technically,
LIGGGHTS is a fork of LAMMPS, themain adaptations being the addition
of mesh geometry support, granular models for particle–particle and
particle–wall interactions, and particle–particle and particle–wall heat
transfer. Numerous other features are added continuously to support
special requirements for large industrial cases. Such cases include simu-
lations of bulk solids needed in the chemical industry and steel industry.
Examples are the coating process of pills in the pharmaceutical industry
and the optimization of dust filters in industrial plants.

LIGGGHTS operates on macroscopic particles and tracks the
trajectory of each. It is designed around an integration loop which inte-
grates Newton's second law and resolves particle–particle and particle–
wall collisions using a soft-sphere approach. Spring-dashpotmodels are
used to compute forces caused by particle–particle interactions (pair
forces) and particle–wall interactions. Additionally, volume forces
such as gravity are applied. The total amount of computational work
during collisions is cut in half by utilizing Newton's third law, thus
avoiding recomputation of the same force with a different orientation.

Fig. 1 illustrates the flow of control for Velocity-Verlet time integra-
tion as implemented in LAMMPS and LIGGGHTS. The two time integra-
tion steps, which update particle positions and velocities, are bracketed
by system modification hooks that allow the simulated system to be
manipulated in various ways. Binning of particles and Verlet lists [4]
are used to improve the efficiency during collision detection. Periodic
spatial sorting of particles ensures that those in close proximity are in
nearby memory locations, thereby increasing cache utilization.

Because of the common code base, many positive performance char-
acteristics are inherited from LAMMPS. Both codes can be used in a
parallel environment through message passing (MPI) [5]. The original
MPI code of LAMMPS used a static domain decomposition [3,6,7]
which partitions space such that the area of communication between
MPI ranks is minimized. A similar approach was taken by Kacianauskas
et al. [6], but they observed an increase in computational effort for sim-
ulations of polydisperse material compared to monodisperse material.
Gopalakrishnan and Tafti [7] reported an almost ideal speed increase
in the DEM portion of a CFD-DEM fluidized bed simulation on up to
64 processors, and a parallel efficiency of 81% on 256 processors.

Static domain decomposition works well for homogeneous con-
densed matter simulations, but in DEM the typically inhomogeneous
and changing distribution of particles across subdomains result in
performance-limiting load imbalances. Thismotivated the development
of a load-balancing scheme in LIGGGHTS throughwhichdomain bound-
aries are dynamically adjusted at runtime. This has since been
backported into LAMMPS [8] and is described in Section 2.1.

The idea of moving domain boundaries is not new. It has previously
been implemented by Srinivasan et al. [9] in the context of molecular
dynamics. They generate equally loaded rectangular regions by moving

Powder Technology 278 (2015) 234–247

⁎ Corresponding author.
E-mail addresses: richard.berger@jku.at (R. Berger),

christoph.kloss@dcs-computing.com (C. Kloss), akohlmey@gmail.com (A. Kohlmeyer),
stefan.pirker@jku.at (S. Pirker).

http://dx.doi.org/10.1016/j.powtec.2015.03.019
0032-5910/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2015.03.019&domain=pdf
http://dx.doi.org/10.1016/j.powtec.2015.03.019
mailto:richard.berger@jku.at
mailto:christoph.kloss@dcs-computing.com
mailto:akohlmey@gmail.com
mailto:stefan.pirker@jku.at
http://dx.doi.org/10.1016/j.powtec.2015.03.019
http://www.sciencedirect.com/science/journal/00325910


domain boundaries in increments of a load-discretizing (LD) grid that is
coarser than the computation domain (CD) grid. Load balancing occurs
onmultiple levels by adjusting cuts in the x, y and z directions. The load
balancing is based on particle density or number of pairs in each
subdomain. In their simulations, a reduction in computation time by
as much as 50% was achieved.

More sophisticated load-balancing techniques were employed by
Plimpton et al. [10], who applied three different decompositions in a
joint finite-element (FE) and smoothed particle hydrodynamics (SPH)
code. They employed static FE decomposition of mesh elements, while
SPH-decomposition and contact-decomposition of contact-nodes and
SPH-particles were performed dynamically using Recursive Coordinate
Bisection (RCB) [11]. This geometric algorithm was chosen because it
produced well-shaped subdomains and exhibited linear scaling to the
problem size.

RCB and many other dynamic load-balancing algorithms were eval-
uated by Hendrickson and Devine [12]. They listed geometric methods
like RCB as being well suited to geometric problems such as particle
simulations. RCB in particular is considered to be one of the fastest
and easiest to implement in this group of algorithms. It also has the
valuable property of being incremental, meaning that small changes in
a domain only lead to small changes in the decomposition. This property
minimizes expensive communication between processors.

Recently, LAMMPS has also gained the ability to use RCB directly for
its MPI decomposition [13]. However, this implementation only
balances the number of particles in each subdomain, not the actual
workload. It is also incompatible with the current MPI parallelization
of meshes in LIGGGHTS.

A different parallelization strategy, known as particle subset meth-
od, was employed by Kafui et al. [14] in their CFD-DEM code. They ap-
plied a “mincut” graph-partitioning algorithm to a graph of particles
and their contacts that generates partitions of particles with a minimal
number of contacts with particles in another partition. Based on these
partitions, for each MPI process working on a single partition, particles

are assigned and halo regions defined. Partitions are recomputed at reg-
ular intervals for dynamic balancing.

The desire for better load balancing and better utilization of available
compute resources motivated many groups to experiment with the par-
ticle subsetmethod using shared-memory parallelizations in their codes.
Since fall 2011, LAMMPS has included an add-on package called USER-
OMP [15], which providesmulti-threaded and thread-safe variants of se-
lectedmodules and subroutines, in particular force kernels, neighbor-list
builds and a few selected other modules. In 2013, our exploration of
using these OpenMP modifications for LIGGGHTS started [16].

Concurrently, Amritkar et al. [17] developed an OpenMP
parallelization forMFIX DEM code which uses the particle subsetmeth-
od. They argued that for the N-body particulate phase of their CFD-DEM
simulation, a parallelization over the number of particles is more suit-
able. To support their claim, they presented measurements of a fluid-
ized bed simulation (uniform particle distribution) and a rotary kiln
heat transfer simulation (non-uniform distribution). Despite higher
overheads for fetching non-local data, the better load balancing makes
the OpenMP parallelization 50–90% faster than MPI-only. To achieve
optimal speed increases, they ensured that data was stored locally by
following the first-touch policy, and that thread/process affinity was
set using placement tools.

Finally, Liu et al. [18] further expanded on existingMPI and OpenMP
work and described a hybridMPI/OpenMP parallelization of theirMFIX-
DEM solver. They emphasized that data locality and thread placement
policies play a critical role in scaling OpenMP to large core counts.
They also mentioned the necessity of distinguishing between private
and global data in multi-threaded code, which avoids race conditions
by each thread using its own copy of data and reductions. Due to re-
duced MPI communication, their hybrid becomes faster. Scaling was
presentedusing a coupled CFD-DEMrunof a 3Dfluidized bed simulation.
They reported speed increases of 185× on 256 cores (72% efficiency) of
their hybrid parallelization compared to 138× using a standalone MPI
computation with 5.12 million particles.

Neighboring

Integration Step 1

Integration Step 2

Pair-wise force kernels

End of Step

Beginning of Step

Preparations

Output

Gravity
Wall forces

Mesh Neighboring

Mesh Transformations
Insertion/Removal of particles

Communication

Modify time

Output time

Pair time

Comm time

Neigh time

Other time

Load Balancing
Spatial Sorting

Fig. 1. LIGGGHTS integration loop (simplified). At the beginning of each step, particles may be inserted andmeshes transformed. Particles are exchanged betweenMPI processes, and load
balancing may occur. After communication, neighbor lists are built. Forces are computed between integration steps 1 and 2. The parts of the loop that can be parallelized are shown as 4
separate squares. The color codes indicate how these sections contribute to the total timing breakdown.

235R. Berger et al. / Powder Technology 278 (2015) 234–247



Download English Version:

https://daneshyari.com/en/article/235615

Download Persian Version:

https://daneshyari.com/article/235615

Daneshyari.com

https://daneshyari.com/en/article/235615
https://daneshyari.com/article/235615
https://daneshyari.com

