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Using the optimal control theory, the problem of finding profiles of gravity flow discharge chutes required to
achieve maximum exit velocity of granular material under the speed dependent resisting forces is solved. A
model of a particlemovingdown a curvewhich is treated as a unilateral constraint is used. The fastflowcondition
and the condition that the particle does not leave the curve are introduced as the additional inequality
constraints. The influence of the initial particle speed and the power of the speed in the expression for the
resisting force on the optimal chute profile are analyzed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the problems of the optimization of gravity
flow discharge chute profiles in bulk granularmaterials handling instal-
lations. Fig. 1(a) displays a principle scheme of such an installation.
From the bin (1), the granular material (2)moves bymeans of the feed-
er (3) into the loading chute (4). At the exit of the chute, the material is
delivered to the conveyor (5) (note that some other storage device can
be this component of the system). A granular material flows along a
chute under the action of its own weight and that is why in the litera-
ture such chutes are called gravity flow discharge chutes. In chute
profile optimization the most common optimization criteria are the
minimization of the transit time of granular materials and the minimi-
zation of the losses of mechanical energy of granular materials due to
the friction. The last criterion is often expressed as maximization of
the exit velocity of the granular material. For the other optimization
criteria for this type of installation see [1,2].

In the reference [3] it was shown that in case when a material flows
through a chute in the formof fastflow, the flow ofmaterial through the
chute can bemodeled as a particleMmoving down a curvewith tangen-
tially directed resisting forces (see Fig. 1(b)). The curve is treated as a
unilateral constraint because the open chutes are considered. This
means that the particle must slide along the curve like a block on an
inclined plane. The shape of this curve should be such that the particle
M starting from the positionM0(x0,y0) with the initial speed V0 reaches

the position O(0,0) either for the minimal time or the maximal speed
(minimal losses ofmechanical energy). In Fig. 1(b), y represents the ver-
tical axis directed downwards, and x is the horizontal axis of a Cartesian
coordinate system.

In the reference [4] considerations of the problem of maximum exit
velocity of granularmaterial under the speed dependent resisting forces
do not take into account the fast flow condition and the condition that
the particle does not leave the chute. Consequently, the results obtained
in [4] refer to those values of the model's parameters that ensure the
satisfaction of the previous conditions without their explicit incorpora-
tion in the equations of the problem. A similar problem, without
connection with the problem of optimization of discharge chutes,
was considered in [5]. The solution for the problem of maximum exit
velocity under the Coulomb friction force as well as a review of litera-
ture relating to this problem is given in [6].

In this paper, using the optimal control theory [7,8], the problem of
maximization of exit velocity is solved by directly introducing the fast
flow condition and the condition of non-leaving the chute bottom. To
the best of the authors' knowledge, solving the considered problem by
using these two conditions has not been reported elsewhere before.
These conditions, considering the model of a particle used, are repre-
sented by equivalent conditions that the particle tangential acceleration
is larger or equal to zero and that during motion the reaction of the
chute does not change the direction. The resisting force that depends
on the particle velocity is considered. The numerical procedure for solv-
ing the problem is based on the shootingmethod [9]. The determination
of optimal chute profiles is illustrated via examples. The obtained chute
profiles are compared with those existing in literature.
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2. Optimal control formulation

The differential equation of motion of the particle M shown in
Fig. 1(b) reads:

m a!¼ m g!þ N
!þ F

!
w: ð1Þ

where a! is the acceleration of the particle, g!¼ g j
!
; g is the acceleration

of gravity, N
!

is the normal component of the constraint reaction force,

and F
!

W is the resisting force.
Let us introduce the unit vectors τ! and σ! in the following way [10]

(see Fig. 1(b)):

τ!¼ cos φð Þ i!þ sin φð Þ j
!
; ð2Þ

σ!¼ d τ!
dφ

¼ −sin φð Þ i!þ cos φð Þ j
!
; ð3Þ

where i
!

and j
!

are the unit vectors of axes x and y, respectively, and τ!
and φ are the unit vector and the slope angle of the tangent to the
particle path, respectively. It is obvious that τ!� σ!¼ 0. The reason to in-
troduce vector σ! is that the unit vector σ!, in contrast to the principal
normal unit vector of the particle path, does not change the orientation
with changing of the concavity of the curve and it is constantly directed
to the same side with g! (see Fig. 1(b)). Now, the acceleration a! can be
written as (see [10])

a!¼V
�

τ!þ V φ
�
σ! ð4Þ

where an overdot denotes the derivative with respect to time t and V

represents the projection of the particle velocity on the direction τ!.
Also, in regard to Fig. 1(b), the following kinematics relations hold:

x
� ¼ V cos φ; y

� ¼ V sin φ: ð5Þ

In further considerations it is assumed that the force F
!

W has the
following form:

F
!

W ¼ −mR Vð Þ τ! ð6Þ

where R(V) is the resisting force per unit mass of the form

R Vð Þ ¼ βVk
: ð7Þ

In Eq. (7),β denotes the friction coefficient in dimensionm1− k/s2− k

and k∈ R. In regard to above, projecting Eq. (1) on the directions τ!and
σ! yields

V
� ¼ g sin φ−βVk

; ð8Þ

mV φ
� ¼ mg cos φþ Nσ ; ð9Þ

where Nσ ¼ N
!� σ!. In accordance to the lumped particle model used,

the condition that the particle does not leave the curve can be expressed
in the form

Nσ ≤0; ð10Þ

and the condition that the flow of a granular material through the
discharge chute is fast [3] can be expressed through the following equiv-
alent condition imposed to the particle tangential acceleration:

V
�

≥ 0: ð11Þ

In order to formulate a optimal control task, let us introduce a new
variable p and a control variable u as in [11]:

p ≜ tan φ; u ≜ dp
dx

: ð12Þ

Now, in accordance to Eqs. (5), (8), and (12) and taking the quanti-
ties y, p, and V as states, the following state equations can be formed:

dy
dx

¼ p; ð13Þ

dp
dx

¼ u; ð14Þ

dV
dx

≜ f V p; Vð Þ ¼ gp−βVk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
V

; ð15Þ

with the prescribed initial and terminal conditions

x ¼ 0 : y 0ð Þ ¼ 0 ; V 0ð Þ ¼ V0 ; x ¼ xf : y xf

� �
¼ yf : ð16Þ
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Fig. 1. (a) Gravity flow discharge chute; (b) The physical model of the chute.
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