Contents lists available at ScienceDirect

ELSEVIER

Powder Technology

journal homepage: www.elsevier.com/locate/powtec

Numerical simulation of an internal flow field in a uniflow cyclone separator

Jeongseog Oh *, Sangil Choi, Jeonggeun Kim

Advanced Combustion Laboratory, Korea Institute of Energy Research, Daejeon, Republic of Korea

A R T I C L E I N F O

ABSTRACT

particle diameter.

Article history: Received 20 June 2014 Received in revised form 21 November 2014 Accepted 5 January 2015 Available online 14 January 2015

Keywords: Uniflow cyclone separator Particle separation RSM LES DPM

1. Introduction

Particle removal is an essential step in the coal gasification process because recirculated syngas in a gasifier includes unburned coal and ash particles. Particle concentration in a dust–gas mixture (i.e., particleladen flow) is known to be related to syngas production yield and wall erosion. The process of particle separation in the dust–gas mixture is important for increasing overall gasifier performance and for costeffective syngas production.

Several types of separators have been suggested for particle removal from a dust–gas mixture, including an aero-type cyclone separator, bag filter or membrane type separator, and electrostatic type separator. The aero-type separator uses aerodynamic and centrifugal forces to remove particles. It has the advantage of easier installation and cheaper maintenance cost compared to the bag filter or membrane type separator and the electrostatic type separator, even though it has the disadvantage of limited separation efficiency and range (i.e., a rapid decrease in separation efficiency for fine particles).

The aero-type separator is categorized as either a reverse-flow cyclone separator or a uniflow separator against the streamline direction of the dust–gas mixture inside a separator [1–3]. The reverse-flow cyclone separator (in general, Lapple cyclone) has the advantage of being a well-known and common device, while the uniflow separator

has the advantage of higher performance. The uniflow cyclone separator (UCS) is suggested to maximize collection efficiency and minimize pressure loss [4]. Oh et al. reported an optimized design geometry of the UCS (i.e., the length of the gas outlet tube and a diverging channel) on the basis of a previous study [5] and noted the importance of the internal flow pattern to cyclone performance characteristics.

© 2015 Elsevier B.V. All rights reserved.

The characteristics of a particle separator were numerically investigated using the concept of a uniflow cyclone.

The objective of the current study was to predict the internal flow field and to study the effect of flow streams on

particle movement in a uniflow cyclone separator. The motion of solid particles in a flow field was simulated

using the Eulerian–Lagrangian approach. Inlet temperature ($T_{in} = 300-1100$ K) and pressure ($P_{in} = 1-9$ bar)

were varied for the initial conditions. Dust–gas mixtures (i.e., particle-laden flow) were injected into the separator inlet at $u_{in} = 3-15$ m/s. Calculation results showed that the Eulerian–Lagrangian approach was useful

for modifying the two-phased viscous turbulence flow. The recirculation zone was predicted under a vortex

finder, while a helical flow developed in the carrier gas outlet. Separation efficiency decreased with an increase

in dust-gas temperature and pressure and increased with an increase in particle loading, inlet velocity, and

Numerical simulation can reduce design time and resource cost and so has been effectively used for studying and developing cyclone separators. Flow patterns inside the cyclone separator and separator performance (i.e., particle collection efficiency and pressure loss) are summarized in Table 1 [6–17].

High performance computing (HPC) technology was introduced to study separator performance and to design optimized configuration. Three-dimensional structured [8] and unstructured [7] meshes were used for separator modeling with the FLUENT program. Overall computational cost is known to be exponentially proportional to the turbulent Reynolds number [7].

Visualizing and analyzing the flow pattern inside a cyclone separator is useful because the flow pattern is related to the pressure drop and the gas-solid interaction affects particle collection efficiency [13]. The Reynolds average Navier–Stokes (RANS) model and a large eddy simulation (LES) model have been used to predict the time-averaged or time-dependent flow field in a cyclone separator [10,11,14,17]. In general, a Reynolds stress model is adequate to simulate an anisotropic viscous turbulent flow field inside a separator [8,9], while a renormalization group (RNG) $k - \varepsilon$ model shows under-predicted axial and over-predicted tangential velocity [18].

Computational fluid dynamics (CFD) can be used to investigate the geometric effects of a reverse-flow cyclone on separator performance.

^{*} Corresponding author at: Advanced Combustion Laboratory, Korea Institute of Energy Research, Daejeon, Republic of Korea, 305-343. Tel.: +82 42 860 3479; fax: +82 42 860 3133.

E-mail address: jeongs5@kier.re.kr (J. Oh).

Nomenclature

CFDcomputational fluid dynamicsC _{DPM} DPM concentration (kg/m³)DEMdiscrete element modelDPMdiscrete of a coal particle (µm) D_p diameter of a coal particle (µm) d_{in} diameter of an outlet tube (mm) d_{in} diameter of an outlet tube (mm) d_{out} diameter of an outlet tube (mm) B_{u} overall Euler number (= $\Delta P/[^{12}\rho_A u_{in}^2]$)gacceleration of gravity (m/s²)HPChigh performance computingLESlarge eddy simulation m_A mass flow rate of coal particles (g/s)Pmpmass flow rate of coal particles (g/s)PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{s} pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstreamQUICKquadratic upstreamReynolds average Navier-StokesRKErealizable $k - \varepsilon$ modelRSMReynolds stress modelrradial distance (mm)SKEstandrd $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{a} turbulent intensity to direction i (m/s) u'_{a} air velocity in a separator inlet (m/s) u_{m} mean velocity (m/s) x axial distance (mm) μ_{m} viscosity of air (kg/m3) ρ_{P} bulk density of a coal particle (kg/m3) ρ_{P} bulk density of a coal particle (kg/m3) ρ_{P	ASMM	algebraic slip mixture model
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CFD	computational fluid dynamics
DEM discrete element model DPM discrete phase model DP diameter of a coal particle (μ m) D _m mean diameter of a coal particle (μ m) d _{in} diameter of an outlet tube (mm) d _{uu} diameter of an outlet tube (mm) Eu overall Euler number ($=\Delta P/[V_2 \rho_A u_{in}^2]$) g acceleration of gravity (m/s ²) HPC high performance computing LES large eddy simulation m _A mass flow rate of air (g/s) m _P mass flow rate of coal particles (g/s) PREST pressure-staggered option P _{stat} static pressure (Pa) P _v pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa) QUICK quadratic upstream interpolation for convective kinetics Re _i Reynolds number of species i ($=u_i \times d_{in}/v_i$) RANS Reynolds average Navier–Stokes RKE realizable $k - \varepsilon$ model RNG renormalization $k - \varepsilon$ model RSM Reynolds stress model r radial distance (mm) SKE standard $k - \varepsilon$ model SIMPLE semi-implicit method pressure-linked equations T _w temperature of surrounding air (°C) UCS uniflow cyclone separator (m/s) u _{in} dust-gas velocity in separator inlet (m/s) u' _i fluctuating velocity to direction i (m) u' _i fluctuating velocity in direction i (m) u _{in} mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m ³) ρ_P bulk density of a coal particle (kg/m ³) τ_R flow residence time from an inlet to a gas outlet (s)	C _{DPM}	DPM concentration (kg/m ³)
DPM discrete phase model D_P diameter of a coal particle (µm) D_m mean diameter of a coal particle (µm) d_{in} diameter of an inlet tube (mm) d_{out} diameter of an outlet tube (mm) Eu overall Euler number (= $\Delta P/[\frac{1}{2}\rho_A u_{in}^2]$) g acceleration of gravity (m/s ²) HPC high performance computing LES large eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s) PREST pressure-staggered option P_{stat} static pressure (Pa) P_{tot} total pressure (Pa) P_{re} pressure of ambient air (bar) ΔP pressure of ambient air (bar) ΔP pressure of ambient air (bar) ΔP pressure of ambient of species i ($=u_i \times d_{in}/v_i$) RANS Reynolds average Navier–Stokes RKE realizable $k - \varepsilon$ model RSM Reynolds stress model r radial distance (mm) SKE standard $k - \varepsilon$ model SIMPLE semi-implicit method pressure–linked equations T_{w} temperature of surrounding air (°C) UCS uniflow cyclone separator (m/s) u_{in} dust–gas velocity in separator (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i mean velocity (m/s) x axial distance (mm) μ_A viscosity of air ($kg/m/s$) ν_A kinematic viscosity of air (m ² /s) ρ_A density of air ($kg/m/s$) ρ_B bulk density of a coal particle (kg/m^3) ρ_P bulk density of a coal particle (kg/m^3) τ_R flow residence time from an inlet to a gas outlet (s)	DEM	discrete element model
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DPM	discrete phase model
D_m mean diameter of a coal particle (µm) d_{in} diameter of an inlet tube (mm) d_{out} diameter of an outlet tube (mm) Eu overall Euler number (= $\Delta P/[V_2\rho_A u_{in}^2]$) g acceleration of gravity (m/s²)HPChigh performance computingLESlarge eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s)PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{e} pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= $u_i \times d_{in}/v_i$)RANSReynolds average Navier-StokesRKErealizable $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{w} temperature of surrounding air (°C)UCSuniflow cyclone separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/ms) ν_A kinematic viscosity of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) ρ_P bulk d	D_P	diameter of a coal particle (µm)
d_{in} diameter of an inlet tube (mm) d_{out} diameter of an outlet tube (mm) Eu overall Euler number $(=\Delta P/[\nu_2\rho_A u_{in}^2])$ g acceleration of gravity (m/s^2) HPChigh performance computingLESlarge eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s) PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{cot} total pressure of ambient air (bar) ΔP pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i $(=u_i \times d_{in}/\nu_i)$ RANSReynolds storage Navier-StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{ac} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_n mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m^2/s) ρ_A density of air (kg/m^3) ρ_P bulk density of a coal particle (kg/m^3) <th>D_m</th> <th>mean diameter of a coal particle (µm)</th>	D_m	mean diameter of a coal particle (µm)
d_{out} diameter of an outlet tube (mm) Eu overall Euler number $(=\Delta P/[\nu_2 \rho_A u_{in}^2])$ g acceleration of gravity (m/s²)HPChigh performance computingLESlarge eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s)PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{tor} total pressure (Pa) P_{vor} total pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i $(=u_i \times d_{in}/v_i)$ RANSReynolds storage Navier-StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{sc} temperature of surrounding air (°C)UCSuniflow cyclone separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m^3) ρ_A density of air (kg/m^3) ρ_A density of air (kg/m^3)	d _{in}	diameter of an inlet tube (mm)
Euoverall Euler number $(=\Delta P/[V_2 \rho_A u_{in}^2])$ gacceleration of gravity (m/s^2) HPChigh performance computingLESlarge eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s) PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{rot} total pressure (Pa) P_{ot} pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i $(=u_i \times d_{in}/v_i)$ RANSReynolds average Navier-StokesRKErealizable $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	dout	diameter of an outlet tube (mm)
gacceleration of gravity (m/s^2) HPChigh performance computingLESlarge eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s) PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{ot} total pressure (Pa) P_{∞} pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i $(=u_i \times d_{in}/v_i)$ RANSReynolds average Navier–StokesRKErealizable $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator (m/s) u_in dust-gas velocity in a separator inlet (m/s) $u'_i lum$ turbulent intensity to direction i (m/s) $u'_i man velocity (m/s)$ x x axial distance (mm) μ_A air velocity (m/s) x axial distance (mm) μ_A air velocity in a separator inlet (m/s) $u'_i lum$ turbulent intensity to direction i (m/s) u'_A air velocity for air (kg/m/s) ν_A kinematic viscosity of air (m/s) μ_A air (kg/m/s) ρ_B bulk density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) ρ_P	Eu	overall Euler number $(=\Delta P/[\frac{1}{2}\rho_A u_{in}^2])$
HPChigh performance computingLESlarge eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s)PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{cot} total pressure (Pa) P_{xc} pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= u _i × d _{in} /v _i)RANSReynolds average Navier-StokesRKErealizable k - ε modelRNGrenormalization k - ε modelRSMReynolds stress modelrradial distance (mm)SKEstandard k - ε modelSIMPLEsemi-implicit method pressure-linked equations T_{wc} timperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m's) v_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	g	acceleration of gravity (m/s ²)
LES large eddy simulation m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s) PREST pressure-staggered option P_{stat} static pressure (Pa) P_{tot} total pressure (Pa) P_{∞} pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa) QUICK quadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= u _i × d _{in} /v _i) RANS Reynolds average Navier–Stokes RKE realizable k – ε model RNG renormalization k – ε model RSM Reynolds stress model r radial distance (mm) SKE standard k – ε model SIMPLE semi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C) UCS uniflow cyclone separator u_A air velocity in a separator (m/s) u'_{i} fluctuating velocity to direction i (m/s) u'_{i} fluctuating velocity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m ² /s) ρ_A density of a coal particle (kg/m ³) ρ_P bulk density of a coal particle (kg/m ³) τ_R flow residence time from an inlet to a gas outlet (s)	HPC	high performance computing
m_A mass flow rate of air (g/s) m_P mass flow rate of coal particles (g/s)PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{rot} total pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= $u_i \times d_{in}/v_i$)RANSReynolds average Navier-StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m/s) μ_A viscosity of air (kg/m/s) ν_A density of air (kg/m/s) ρ_P bulk density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	LES	large eddy simulation
m_P mass flow rate of coal particles (g/s)PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{rot} total pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (=u_i × d_{in}/v_i)RANSReynolds average Navier-StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i turbulent intensity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m/s) u'_i fluctuating velocity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A density of air (kg/m/s) ρ_P bulk density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³)	m_A	mass flow rate of air (g/s)
PRESTpressure-staggered option P_{stat} static pressure (Pa) P_{tot} total pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= $u_i \times d_{in}/v_i$)RANSReynolds average Navier-StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	m_P	mass flow rate of coal particles (g/s)
P_{stat} static pressure (Pa) P_{tot} total pressure (Pa) P_{∞} pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i ($=$ u _i × d _{in} / v_i)RANSReynolds average Navier–StokesRKErealizable k – ε modelRNGrenormalization k – ε modelRSMReynolds stress modelrradial distance (mm)SKEstandard k – ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust–gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) v_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	PREST	pressure-staggered option
P_{tot} total pressure (Pa) P_{∞} pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= $u_i \times d_{in}/v_i$)RANSReynolds average Navier–StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	P_{stat}	static pressure (Pa)
P_{∞} pressure of ambient air (bar) ΔP pressure drop in a uniflow cyclone separator (Pa)QUICKquadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= $u_i \times d_{in}/v_i$)RANSReynolds average Navier–StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	P _{tot}	total pressure (Pa)
$ \Delta P $ pressure drop in a uniflow cyclone separator (Pa) QUICK quadratic upstream interpolation for convective kinetics Re_i Reynolds number of species i (= u _i × d _{in} /v _i) RANS Reynolds average Navier–Stokes RKE realizable k – ε model RNG renormalization k – ε model RSM Reynolds stress model r radial distance (mm) SKE standard k – ε model SIMPLE semi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C) UCS uniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust–gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i fluctuating velocity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) v_A kinematic viscosity of air (m ² /s) ρ_A density of a coal particle (kg/m ³) τ_R flow residence time from an inlet to a gas outlet (s)	P_{∞}	pressure of ambient air (bar)
QUICKquadraticupstreaminterpolationforconvective kinetics Re_i Reynolds number of species i (= $u_i \times d_{in}/v_i$)RANSReynolds average Navier–StokesRKErealizable k – ε modelRNGrenormalization k – ε modelRSMReynolds stress modelrradial distance (mm)SKEstandard k – ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) v_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	ΔP	pressure drop in a uniflow cyclone separator (Pa)
kinetics Re_i Reynolds number of species i $(=u_i \times d_{in}/v_i)$ RANSReynolds average Navier–StokesRKErealizable $k - \varepsilon$ modelRNGrenormalization $k - \varepsilon$ modelRSMReynolds stress model r radial distance (mm)SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust–gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) v_A kinematic viscosity of air (m²/s) ρ_A density of a coal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	QUICK	quadratic upstream interpolation for convective
Re_i Reynolds number of species i $(=u_i \times d_{in}/v_i)$ RANSReynolds average Navier–StokesRKErealizable k – ε modelRNGrenormalization k – ε modelRSMReynolds stress modelrradial distance (mm)SKEstandard k – ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust–gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u'_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) v_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)		kinetics
RANSReynolds average Navier–StokesRKErealizable k – ε modelRNGrenormalization k – ε modelRSMReynolds stress modelrradial distance (mm)SKEstandard k – ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust–gas velocity to direction i (m/s) u'_i fluctuating velocity to direction i (m/s) u'_w mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air cal particle (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	<i>Re</i> _i	Reynolds number of species i (= $u_i \times d_{in}/v_i$)
RKErealizable k – ε modelRNGrenormalization k – ε modelRSMReynolds stress modelrradial distance (mm)SKEstandard k – ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_w mean velocity (m/s)xaxial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	RANS	Reynolds average Navier–Stokes
RNGrenormalization k – ε modelRSMReynolds stress modelrradial distance (mm)SKEstandard k – ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_u turbulent intensity to direction i (%) u_m mean velocity (m/s)xaxial distance (mm) μ_A viscosity of air (kg/m/s) v_A kinematic viscosity of air (m²/s) ρ_A density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	RKE	realizable k $-\epsilon$ model
RSMReynolds stress modelrradial distance (mm)SKEstandard k - ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_u turbulent intensity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	RNG	renormalization k $-\epsilon$ model
rradial distance (mm)SKEstandard k - ε modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_u turbulent intensity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	RSM	Reynolds stress model
SKEstandard $k - \varepsilon$ modelSIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_u turbulent intensity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	r	radial distance (mm)
SIMPLEsemi-implicit method pressure-linked equations T_{∞} temperature of surrounding air (°C)UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_u turbulent intensity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	SKE	standard k – ε model
$\begin{array}{ll} T_{\infty} & \text{temperature of surrounding air (°C)} \\ \text{UCS} & \text{uniflow cyclone separator} \\ u_A & \text{air velocity in a separator (m/s)} \\ u_{in} & \text{dust-gas velocity in separator inlet (m/s)} \\ u'_i & \text{fluctuating velocity to direction i (m/s)} \\ u'_i u_m & \text{turbulent intensity to direction i (%)} \\ u_m & \text{mean velocity (m/s)} \\ x & \text{axial distance (mm)} \\ \mu_A & \text{viscosity of air (kg/m/s)} \\ \nu_A & \text{kinematic viscosity of air (m^2/s)} \\ \rho_P & \text{bulk density of a coal particle (kg/m^3)} \\ \tau_R & \text{flow residence time from an inlet to a gas outlet (s)} \end{array}$	SIMPLE	semi-implicit method pressure-linked equations
UCSuniflow cyclone separator u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i/u_m turbulent intensity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	T_{∞}	temperature of surrounding air (°C)
u_A air velocity in a separator (m/s) u_{in} dust-gas velocity in separator inlet (m/s) u'_i fluctuating velocity to direction i (m/s) u'_i/u_m turbulent intensity to direction i (%) u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	UCS	uniflow cyclone separator
$\begin{array}{ll} u_{in} & \text{dust-gas velocity in separator inlet (m/s)} \\ u'_i & \text{fluctuating velocity to direction i (m/s)} \\ u'_i/u_m & \text{turbulent intensity to direction i (%)} \\ u_m & \text{mean velocity (m/s)} \\ x & \text{axial distance (mm)} \\ \mu_A & \text{viscosity of air (kg/m/s)} \\ \nu_A & \text{kinematic viscosity of air (m^2/s)} \\ \rho_A & \text{density of air (kg/m^3)} \\ \rho_P & \text{bulk density of a coal particle (kg/m^3)} \\ \tau_R & \text{flow residence time from an inlet to a gas outlet (s)} \end{array}$	u_A	air velocity in a separator (m/s)
$\begin{array}{ll} u'_{i} & \text{fluctuating velocity to direction i (m/s)} \\ u'_{i}/u_{m} & \text{turbulent intensity to direction i (%)} \\ u_{m} & \text{mean velocity (m/s)} \\ x & \text{axial distance (mm)} \\ \mu_{A} & \text{viscosity of air (kg/m/s)} \\ \nu_{A} & \text{kinematic viscosity of air (m^{2}/s)} \\ \rho_{A} & \text{density of air (kg/m^{3})} \\ \rho_{P} & \text{bulk density of a coal particle (kg/m^{3})} \\ \tau_{R} & \text{flow residence time from an inlet to a gas outlet (s)} \end{array}$	u _{in}	dust-gas velocity in separator inlet (m/s)
$\begin{array}{ll} u'_{i}/u_{m} & \mbox{turbulent intensity to direction i (%)} \\ u_{m} & \mbox{mean velocity (m/s)} \\ x & \mbox{axial distance (mm)} \\ \mu_{A} & \mbox{viscosity of air (kg/m/s)} \\ \nu_{A} & \mbox{kinematic viscosity of air (m^{2}/s)} \\ \rho_{A} & \mbox{density of air (kg/m^{3})} \\ \rho_{P} & \mbox{bulk density of a coal particle (kg/m^{3})} \\ \tau_{R} & \mbox{flow residence time from an inlet to a gas outlet (s)} \end{array}$	u'_i	fluctuating velocity to direction i (m/s)
u_m mean velocity (m/s) x axial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	u'_i/u_m	turbulent intensity to direction i (%)
xaxial distance (mm) μ_A viscosity of air (kg/m/s) ν_A kinematic viscosity of air (m²/s) ρ_A density of air (kg/m³) ρ_P bulk density of a coal particle (kg/m³) τ_R flow residence time from an inlet to a gas outlet (s)	u_m	mean velocity (m/s)
$\begin{array}{ll} \mu_{A} & \text{viscosity of air } (\text{kg/m/s}) \\ \nu_{A} & \text{kinematic viscosity of air } (\text{m}^{2}/\text{s}) \\ \rho_{A} & \text{density of air } (\text{kg/m}^{3}) \\ \rho_{P} & \text{bulk density of a coal particle } (\text{kg/m}^{3}) \\ \tau_{R} & \text{flow residence time from an inlet to a gas outlet } (\text{s}) \end{array}$	x	axial distance (mm)
$ \begin{array}{ll} \nu_A & \text{kinematic viscosity of air } (\text{m}^2/\text{s}) \\ \rho_A & \text{density of air } (\text{kg/m}^3) \\ \rho_P & \text{bulk density of a coal particle } (\text{kg/m}^3) \\ \tau_R & \text{flow residence time from an inlet to a gas outlet } (\text{s}) \end{array} $	μ_{A}	viscosity of air (kg/m/s)
$\begin{array}{ll} \rho_A & \text{density of air } (\text{kg/m}^3) \\ \rho_P & \text{bulk density of a coal particle } (\text{kg/m}^3) \\ \tau_R & \text{flow residence time from an inlet to a gas outlet } (\text{s}) \end{array}$	ν_A	kinematic viscosity of air (m^2/s)
$ \begin{array}{l} \rho_P & \text{bulk density of a coal particle } (\text{kg/m}^3) \\ \tau_R & \text{flow residence time from an inlet to a gas outlet } (s) \end{array} $	ρ_A	density of air (kg/m ³)
$ au_R$ flow residence time from an inlet to a gas outlet (s)	ρ_P	bulk density of a coal particle (kg/m ³)
	$ au_R$	flow residence time from an inlet to a gas outlet (s)

Previous results have shown that geometric configurations, such as the cyclone cut-off diameter [19], cone-tip diameter [20], vortex finder shape [21], and cyclone inlet or outlet shape [22,23], influence the separation efficiency and pressure drop.

Particle collection efficiency increases with a decrease in cyclone height due to a reduction in tangential velocity [24], and the pressure drop decreases with an increase in the inlet section angle from 0° to 45° due to a reduction of the shortcut flow rate at a fixed inlet velocity [9,12].

Most previous work focuses on how to increase separator performance in the reverse-flow cyclone separator. To our knowledge, there is no numerical investigation of an unsteady flow field in the UCS. In the current study, the characteristics of a particle separator were investigated using the concept of a uniflow cyclone. Numerical simulation was carried out with the general-purpose CFD program ANSYS Fluent ver. 12.01 [25]. The objective of the current study is to predict the internal flow field and to study the effect of flow streams on particle movement in a UCS.

2. Numerical methods

2.1. Turbulent flow modeling

The three-dimensional flow field in a UCS was simulated using CFD. The conservation equations for mass and momentum in an incompressible Newtonian flow are as follows [25]:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \, \vec{v} \right) = S \tag{1}$$

$$\frac{\partial}{\partial t} \left(\rho \, \overrightarrow{v} \right) + \nabla \cdot \left(\rho \, \overrightarrow{v} \, \overrightarrow{v} \right) = -\nabla p + \nabla \cdot \left(\overline{\overline{\tau}} \right) + \rho \, \overrightarrow{g} + \overrightarrow{F}$$
(2)

where ρ is the fluid density, v is the fluid velocity, *p* is the static pressure, τ is the stress tensor $(=\mu \left[\left(\nabla \vec{v} + \nabla \vec{v}^T \right) - \frac{2}{3} \nabla \cdot \vec{v}I \right] \right]$, μ is the molecular viscosity, I is the unit tensor, ρg is the gravitational body force, and *F* is the external body force.

The Reynolds stress model (RSM) was used to modify the viscous turbulent flow in the UCS. The turbulence transport equation for RSM is as follows [25]:

$$\frac{\partial}{\partial t} \left(\rho \overline{u'_{i} u'_{j}} \right) + \frac{\partial}{\partial x_{k}} \left(\rho u_{k} \overline{u'_{i} u'_{j}} \right) = -\frac{\partial}{\partial x_{k}} \left[\rho \overline{u'_{i} u'_{j} u'_{k}} + \overline{p\left(\delta_{kj} u'_{i} + \delta_{ik} u'_{j}\right)} \right] \\
+ \frac{\partial}{\partial x_{k}} \left[\mu \frac{\partial}{\partial x_{k}} \left(\overline{u'_{i} u'_{j}} \right) \right] - \rho \left(\overline{u'_{i} u'_{j}} \frac{\partial u_{j}}{\partial x_{k}} + \overline{u'_{j} u'_{k}} \frac{\partial u_{i}}{\partial x_{k}} \right) \\
- \rho \beta \left(g_{i} \overline{u'_{j} \theta} + g_{j} \overline{u'_{i} \theta} \right) + \overline{p} \left(\frac{\partial u'_{i}}{\partial x_{j}} + \frac{\partial u'_{j}}{\partial x_{k}} \right) u'_{j} \\
- 2 \mu \overline{\partial u'_{i} \partial u'_{j}} + S$$
(3)

where *t* is time, ρ is the density of fluid, u'_i is the fluctuating velocity to direction i ($= u_i - u_m$), u_i is the velocity to direction *i*, u_m is the mean velocity to direction *i*, $\overline{u'_iu'_j}$ is the Reynolds stress tensor, β is the coefficient of thermal expansion, *p* is the pressure, μ is the eddy viscosity, and *S* is the source term.

The two terms on the left hand side of Eq. (3) indicate local time derivative and convection, respectively from left to right. The terms on the right hand side of Eq. (3) indicate turbulent diffusion, molecular diffusion, stress production, buoyancy production, pressure strain, and dissipation, respectively from left to right. The terms for turbulent diffusion, buoyancy production, pressure strain, and dissipation are needed for modeling [26].

2.2. Discrete phase modeling

The motion of solid particles in a flow field was simulated using the Eulerian–Lagrangian approach with a discrete phase method (DPM), i.e., the gas phase was treated as a continuum by solving Navier–Stokes equations and the solid phase was calculated by tracking particles in the flow field because the solid phase flow and gas-phase flow cannot be calculated simultaneously [18]. The volume fraction of the dispersed second phase (i.e., particle loading) did not exceed 10%, indicating that the volumetric flow rate of solid particles was sufficiently lower than that in the gas phase. It was assumed particle–particle interaction to be negligible and that particles did not affect the flow field (i.e., one-way coupling). A stochastic tracking method was used for modeling the turbulent dispersion of particles. The force balance equation for particle movement in a Lagrangian reference frame is as follows [25]:

$$\frac{du_p}{dt} = F_D \left(u_A - u_p \right)_x \tag{4}$$

Download English Version:

https://daneshyari.com/en/article/235707

Download Persian Version:

https://daneshyari.com/article/235707

Daneshyari.com