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In the framework of the Scale Relativity Theory, non-linear effects in complexfluids and, implicitly, the separation
control of the solid components fromheterogeneousmixtures are analysed. Assuming that themovements of the
complex fluid entities occur on continuous but non-differentiable curves, the specific momentum and the local
energy density conservation law equations are obtained. For potential movements at a fractal scale, as well as
for non-potential ones at a differentiable scale, the non-differentiable hydrodynamic model is established. In
such context, for different curve motions at various resolution scales, the non-differentiable hydrodynamic
model is reduced to either a quantum hydrodynamic model, a standard hydrodynamic model, a random walk
model, or a Stokes model. By numerical simulations using the non-differentiable hydrodynamic equations and
the internal energy density conservation law with adequate initial and boundary conditions, some non-linear
effects are obtained. Moreover, eliminating the time between the viscosity stress tension type and temperature
field, for various given positions, thermal hysteresis type effects can be obtained. For each of the models
mentioned above, the separation control processes are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The natural functionalities of a fluid entail the dynamics of fluid–
solid mixture flows. Furthermore, the same dynamics generate many
applications in the industry: the co-current down-flow circulating
fluidised bed reactors [1], the optimisation of air de-pollution
installations [2], the sedimentation of solid particles in a turbulent
flow in horizontal channels [3], the mixture separation regimes of
solid particles [4–7], etc.

Theoretical models have investigated the influences of mixture
parameters on velocity flows (e.g., the properties of solid particles
[8–11]) or the distribution of solid particles due to the rotational
regimes of these flows in a fluid [12–14]. An interesting review of the
numerical simulations of fluid–solid mixture flows was published by
Zhang et al. [15]. According to the usual concepts [16–18], all of these

theoretical models assume that the dynamics of both the fluid and
the solid particles in fluid–solid mixtures occur on continuous and
differentiable curves [16,17], so such dynamics can be described by
continuous and differentiable functions (e.g., density, velocity or
temperature fields). These functions are exclusively dependent on
the spatial coordinates and time. Usually, the computational fluid
dynamic models start from one, or a set of differential equations,
discretised bymeans of finite element method, the increased precision
of the model implying powerful hardware systems and long time of
operation.

However, in reality, a fluid–solid mixture flow proves to be much
more complex. Therefore, the above simplifications cannot explain all
of the aspects of the flow dynamics. Thus, a new mathematical formal-
ism is needed that takes into account the complexity of the dynamics
of fluid–solid mixture flows.

The first step in developing newmathematical formalismwas made
in [19]. By analysing the dynamics thatwas induced bydifferent types of
solid particle–real fluid interactions, which generated a boundary layer,
we showed that, after imposing adequate initial and boundary
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conditions, the dynamic equations of the fluid–solid mixtures (the
Prandtl and continuity equations for plane symmetry) generate local
soliton, kink and soliton–kink nonlinear solutions for the velocity field
of the fluid. Local velocity gradients, which act at the boundary layer
limit, then induce rotational movements in a fluid, which are
transferred to an external solid particle due to adherence and fluid
viscosity. Thus, the external solid particle jumps from one streamline
to another.

Considering the Scale Relativity Theory (SRT) [20–22], such be-
haviour in Euclidian space (themovement along a streamline follow-
ed by a jump from one streamline to another) is replaced by
movements on continuous but non-differentiable curves (fractal
curves) in a fractal space [20–27]. Consequently, the Euclidian dy-
namics of fluid–solid mixture with constraints (interactions) are
substituted by the fractal dynamics of complex fluid that is free of
any constraints. Complex fluid entities move along continuous but
non-differentiable curves (fractal curves) that have a double identi-
ty; these curves are both the geodesics of a fractal space and the
streamlines of the complex fluid. The dynamics of complex fluid
can be described using fractal quantities (fractal density, fractal
momentum, fractal energy, etc.), i.e., functions that depend on the
spatial coordinates, time and resolution scales. In such a conjecture,
the complex fluid has specific properties, such as a hysteretic one
(memory) [28,29].

Considering the presented arguments, using the SRT mathematical
formalism, we showed in [30], that the entities of a complex fluid
move along the fractal curves that are described by the Navier–Stokes
type equations of a complex velocity field with complex structure
coefficients (imaginary coefficient of the viscosity type, etc.). In this
approximation of the movement, which was termed by us the
convective–dissipative approximation of the movement, the local self-
acceleration, self-convective and self-dissipative effects are in equilibrium
at any point of anymovement path. These trajectories are simultaneously
assimilated, even with fractal space geodesics or with the streamlines of
the complex fluid. The complex velocity field that is correlated with the
resolution scales is mathematically translated into the separation of the
real part from the imaginary part, which induces the hydrodynamic
fractal model (HFM). The HFM contains density and momentum
conservation laws, and these laws are dependent on the resolution
scales. The chaoticity (fractality) of the movement trajectories is as-
similated into a fractal potential, which is only dependent on the
imaginary part of the velocity field, with its gradient “functioning”
as a force in the momentum conservation law. For a particular type
of the fractal potential, the nonlinear numerical solutions of the
HFM, such as soliton–antisoliton and soliton–soliton package type
solutions, specify the “non-differentiable” behaviour of the movement
trajectories. Furthermore, independent of the complex fluid flow type,
the real part of the complex velocity generates a flow (a vortex
intensity), while the imaginary part indirectly induces a generalised
lift force.

The present paper gives extended results from [30], taking into
account that the non-linear effects play an important role in the
flow process of complex fluid. Such a flow process frequently occurs
in multi-scale type structures, presenting a temporal diffusion scale,
a temporal convection scale, a temporal heterogeneous reaction,
etc.; e.g., in fluidised bed material systems [31]. The dynamics of
multi-scale-type structures imply the mathematical formalism of
the SRT. Moreover, in our opinion, the non-linear effects induce the
specific mechanisms of the mixture separation regimes of solid par-
ticles in complex fluid flows. Till now, the problem of the segregation
of solid particles from the fluid–solid mixtures has been studied
using Eulerian–Lagrangian models and others [32–34]. Let us note
that the Eulerian–Eulerian approach is the most widely used for
fluidised bed applications.

The present paper is structured as follows: Section 2 — hallmarks of
non-differentiability and conservation laws; Section 3 — non-

differentiable hydrodynamic model and its correspondences with
standard models; Section 4 — non-linear effects in complex fluids
through numerical simulations and Section 5 — conclusions.

2. Hallmarks of non-differentiability. Conservation laws

For developing our theoretical model, we take into account that,
in complex fluid, deterministic chaos arises in association with
spatio-temporal structure emergence. For temporal scales that are
large with respect to the inverse of the highest Lyapunov exponent,
the deterministic trajectories can be replaced by collections of potential
trajectories and the concept of definite positions by that of the probability
density. This conceptwas introduced in the framework of the SRT [21,22],
which states that the particle movements take place on continuous
but non-differentiable curves (fractal curves). Subsequently, all
physical phenomena become dependent not only on the spatio-
temporal coordinates but also on the spatio-temporal scales. Thus,
the non-differentiability becomes a fundamental characteristic of
the complex fluid dynamics.

The main consequences of non-differentiability are the following
[21,22,35–39]:

i) A continuous and non-differentiable curve (or almost no-
where differentiable) is explicitly scale dependent. More-
over, its length tends to infinity, when the scale interval
tends to zero. Consequently, according to Mandelbrot's con-
cept, continuous and non-differentiable space will be a frac-
tal space [25]. Thus, there are infinite fractal curves
(geodesics) relating to any couple of points (or starting
from any point), and this is valid for all resolution scales.
Then, the entities of the complex fluids may be reduced to
and identified with their trajectories, so that the complex
fluids will behave as a special interaction-less fluid (fractal
fluid);

ii) Physical quantities will be expressed through fractal func-
tions, namely those functions depending on space–time coor-
dinates as well as on resolution scale. The invariance of the
physical quantities in relation with the resolution scale gener-
ates special types of transformations that are called resolution
scale transformations. Let us now explain the above statements
through an example in nano-fluids. We can choose the fractal
normalised heat flux–fractal normalised temperature charac-
teristic in the form:

T ¼ J 1þ μ

1þ J2

 !
ð1Þ

where T is the fractal normalised temperature, J is the fractal
normalised heat flux and μ is a parameter depending on
scale resolution. This relation induces thermal conduction
bistability (see Fig. 1) as follows:
— the restriction μ ≥ 8 implies bistability;
— the value of μ sets the scale resolution through the thermal

transfer regimes of the complex fluid;
— once μ isfixed (with μ≥ 8), for values of the fractal normalised

heat flux in the interval AB on the characteristic (see Fig. 1)
the fractal normalised temperature can have two distinct
stable values;

— thermal conduction bistability is associated with a nega-
tive differential thermal resistance (or thermal hysteresis)
[40];

— since T and J are fractal functions (relation (1)) they can
exhibit the property of self-similarity. Consequently, ther-
mal conduction bistability in Fig. 1 can occur at any scale
resolution (i.e. for different thermal transfer regimes of
the complex fluid);
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