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The current work concerns determining elastic properties of particles when employing single particle uniaxial
compression tests. These properties are essential for numerical computations using DEM simulations. Five dif-
ferent particulate materials were tested. Three crystalline materials: dead sea salt, potash and green zirconium
spheres. Also, two amorphous materials: GNP and glass spheres. The yield point, elastic contact stiffness and
effective modulus of elasticity were determined by characterizing the force–displacement experimental
curve. Statistical analysis showed that for some materials the effective modulus of elasticity depends on particle
size. Finally, a mathematical model was established that describes the distribution of the effective modulus of
elasticity and its dependence on the particle size for salt.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Elastic properties of particles such as Young's modulus and Poisson's
ratio are necessary material properties for modeling particle–particle
and particle–wall interactions using DEM simulations [1–3]. These
properties must be determined experimentally for accurate computa-
tional results. Since DEM deals with individual particles, these proper-
ties can be achieved only from experiments on single particles.

The contact area caused by compression between a spherical body
and a flat surface deforms as a circle. In this case, if the contact surface
is rigid and smooth, the force–displacement relationship during elastic
deformation is given by [4,5]:

F ¼ 4
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where d and E* are the diameter and the effective modulus of elasticity
of the spherical body, respectively. The effective modulus of elasticity is
defined as:

E� ¼ E
1−ν2
� � ð2Þ

where E and ν are the Young's modulus and Poisson's ratio of themate-
rial. According to Eq. (1), the applied force (F) is linearly dependent

on δ3/2, where the effective modulus of elasticity can be found from

the slope of this relationship 4
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. This dependence also holds

for more general cases, where the contact area is elliptical [5].
In a diametric compression test, where a spherical body is sub-

jected to compression between two rigid and flat surfaces, it can
be assumed that both sides of the body deform symmetrically. Then
Eq. (1) leads to:

F ¼ 1
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where Δ is the total displacement of the platens (Δ = 2δ). Following
this further, the contact stiffness in the normal direction in the case
of elastic deformation can be calculated from the gradient of Eq. (3)
as follows:
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dF
dΔ
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The contact stiffness increases with increase in deformation and
particle size and reaches the maximum value in the yield point [6].
Then, the elastic–plastic deformation begins. The force–displacement
relationship during elastic–plastic deformation can be derived from
the contact stiffness model of Tomas [7] as follows [8]:

F ¼ 1
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where ΔY and pY are the total displacement and the contact pressure at
the yield point, respectively. The contact stiffness during elastic–plastic
deformation can be derived then from Eq. (5):

KN; el–pl ¼
dF
dΔ

¼ 1
4
πpYd 1−2
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In the case of elastic–perfectly plastic behavior, the force–
displacement relationship beyond the yield point is linearly dependent
[9] as follows:

F ¼ FY þ 1
4
πpYd Δ−ΔYð Þ ð7Þ

where FY is the yield force. Note, that the contact stiffness is constant
during perfectly plastic deformation.

The effective modulus of elasticity of the particle (E*) can be deter-
mined by fitting Eq. (3) to a force–displacement experimental curve
within the elastic deformation range [6,10–14], for which the limit of
elastic deformation (yield point) must be obtained. In previous studies,
Antonyuk et al. [6], Mangwandi et al. [12] and Yap et al. [13] estimated
the limit of elastic deformation as the point of deviation from the con-
stant gradient of F2 versus theΔ3 plot (see Eq. (3)). Samimi et al. [10] es-
timated this limit in a similar way, but the Hertzian model was fitted
only to the early part (maximum0.01N) of the force–displacement data.

This paper focuses on determining the elastic properties of particles
using single particle compression tests. An additional method of deter-
mining the yield point using contact stiffness plot analysis is also sug-
gested. Moreover, the determined effective modulus of elasticity is
represented by a statistical distribution and finally, for the purpose of
a DEM simulation, a model whichmathematically defines this distribu-
tion is proposed.

2. Testing methods and materials

The mechanical behavior of individual particles during compression
is measured by using an originally designed and constructed compres-
sion tester [15]. According to the principle of the test (Fig. 1), the
upper punch, which is operated by a hydro-pneumatic piston, loads
the particle at a constant compression force rate until the first breakage
appears. The applied force is measured by a Load-Cell with an accuracy
of±0.01% from full scale; and is connected to the lower contact surface.
The punch and the lower contact surface are made from alumina 995.
The displacement is measured simultaneously by a LVDT sensor with
an accuracy of ±5 μm. The tester is able to conduct experiments with
individual particles in the size range of 100 μm÷ 6mm. All the experi-
ments were conducted with a constant compression force rate of
1 ÷ 2 N/s [15].

Five different materials were tested in the study (Fig. 2). Three crys-
talline materials: dead sea salt, potash and green zirconium spheres

(raw material for zirconium production). Also, two amorphous mate-
rials: GNP and glass spheres.

3. Experimental results and analysis

3.1. Force–displacement relationship

A typical force–displacement pattern for salt with a narrow particle
size interval of 2 ÷ 2.36mm is presented in Fig. 3. The presented results
are of a single experiment. The chart also contains a plot of the calcu-
lated contact stiffness. Generally, the graph shows the elastic–plastic
behavior of the particle during compression loading until the breakage
point (B) which is obtained by a decrease of the measured force.

We can first observe that the curve shape is similar to Hertz model
until the yield point (Y), which defines the limit of the elastic deforma-
tion. Then, the slope of the curve decreases until the breakage point
(B). In order to determine the yield point, the contact stiffness was
calculated against the total displacement and is presented in Fig. 3
(right axis). Since the contact stiffness at any point is the gradient of
the experimental curve, the calculation was carried out by linear fit
of the measured points after dividing the experimental curve into 50
equal sections. It is clear from contact stiffness plot that the elastic con-
tact stiffness increases until a maximum point (Y). Then, elastic–plastic
deformation begins and is associated with a moderate decrease of the
elastic–plastic contact stiffness until breakage. Since the contact stiff-
ness at the elastic–plastic deformation range is not constant, the defor-
mation of salt particles does not resemble the trend of elastic–perfectly
plastic behavior according to Thornton and Ning [9]. The observed
behavior resembles an elastic–plastic trend.

Once the yield point is determined, we can check if the elastic defor-
mation of the particle has Hertzian behavior based on Eq. (3). Following
this further, Fig. 3 shows the least-square fit within the elastic deforma-
tion of the function:

F ¼ CHΔ
3=2 ð8Þ

where CH is an empirical constant according to Eq. (3) and depends
on the effective modulus of elasticity (E*) and particle diameter (d).
It is clear from Fig. 3 that the elastic deformation of the particle re-
sembles Hertzian behavior meaning that the contact area of the de-
formable particle has comparatively circular or elliptical geometry.
Also, there is a deviation of the experimental curve from the Hertz's
model at point Y, which confirms the method of determining the yield
point.

Fig. 4 presents the same idea that was shown in Fig. 3 for tests with
four different materials (green zirconium, potash, GNP and glass sphere
particles). The force–displacement curve, the appropriate Hertz curve
and the yield point (Y) were determined by the method described
above and presented for each material. According to Fig. 4, we can
conclude: the mechanical behavior of green zirconium during the com-
pression until the breakage point is dominant plastic, the behavior
of potash is elastic–plastic, the behavior of GNP is dominant elastic
and the behavior of glass sphere is elastic without any plastic contact
deformation. It is also clear from Fig. 4 that the method of yield point
determination is suitable for different materials and can be used as a
standard; this method was applied throughout this study.

3.2. Determination of the effective modulus of elasticity

By fitting Eq. (8) to the experimental curve within the elastic defor-
mation aswas shown in Figs. 3 and 4, the effective modulus of elasticity
of the particle can be determined from the empirical parameter CH using
Eqs. (3) and (8) as follows:

E� ¼ 3CH=
ffiffiffi
d

p
: ð9Þ
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Fig. 1. The principle of a single particle compression test.
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