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Solid mixing processes are usually described with the help of the dispersion model. Dispersion is based on sto-
chastic particle movements which are responsible for the concentration balance between the different compo-
nents. For simplification, homogeneity adjustment of the mixture is mostly described by the axial mixing
direction. In this research, the one-dimensional dispersion model is extended to three dimensions. A modified
sampling strategy shows how the dispersion model can be applied to the mixing process in axial, radial,
and tangential directions. Small differences between axial and radial mixing efficiencies are observed for the
45°-configuration of the mixing tool, whereas a higher mixing efficiency is detected in tangential direction.
The 90°-configuration behaves differently. Anisotropic dispersion coefficients are determined for the different
mixing tool configurations. These indicate that particle mobility in axial direction is lowest.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

To describe various solid mixing processes, different model equa-
tions are used. The best-known and most widely used model for solid
mixing systems is the stochastic dispersion–convection model, which
was derived from Fokker [1] and Planck [2].

The dispersion–convection model is frequently used in a one-
dimensional mode to describe the mixing processes in continuous
mixers [3–6]. It is shown that the mixing mechanisms in a continuous
dynamic mixing apparatus can be described well by the Fokker–Planck
Equations with the simplifying assumption of ideal mixing being very
quickly for the radial and tangential directions. This simplification is
justified if the path lengths differ significantly in the three spatial direc-
tions and if, as a result, mixing is influenced by the longest path length.
For instance, when considering a mixing apparatus in which the length
by far exceeds the diameter [3–5], themixing process is dominatedmost
significantly by the axial direction. In this case, the changes in the system
can be described adequately by one local coordinate.

The one-dimensional dispersion model is also applied for the de-
scription of discontinuous solid mixing processes [7–14]. It is found
that the axial dispersion model can be used for the characterization of
particle mobilities in different mixing processes. Sommer [7] presents
a detailed explanation, derivation, and application of the axial disper-
sion model in a batch mixing process. In rotating drum mixers, the
mixing mechanism is considered to result from axial particle move-
ments due to dispersion [8–11]. Different correlations of particle mobil-
ities and particulatematerials, operating conditions, andmixing devices
are described. The model is also used to describe the blending of

irregularly shaped particles [12] and themixing of segregating particles
[13], and to determine the mixing efficiencies in a twin-shaft paddle
mixer [14]. In the reported researches [7–14], it is assumed that mixing
along the mixer axis decisively influences the duration of mixing. If the
path length in axial direction is the largest by far, it is reasonable to as-
sume that reaching homogeneity is affected by axial mixing. However,
when a batch mixing process with similar path lengths in axial and ra-
dial directions is considered, the one-dimensional view needs to be
discussed. So far, no qualitative data have been provided as to how the
mixing differs in the three spatial directions in a discontinuous solid
mixer with a rotating mixing tool. If mixing differs considerably as a
function of the directions, the directionwith the smallest particlemobil-
ity is sufficient to describe the mixing process. In the opposite case, the
multi-dimensional model needs to be considered.

2. Dispersion model

The dispersion model, also called diffusion–convection model, is
based on Fick's second law with an additional convective term. In
three-dimensional notation, the dispersionmodel is described by Eq. (1):

∂c ξ; tð Þ
∂t ¼ Δ c ξ; tð Þ � D ξ; tð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

−∇ c ξ; tð Þ � U ξ; tð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
convection

; ð1Þ

where:

c = concentration of one mixing component,
ξ = local coordinate (substitute for z, r or θ),
t = time,
D = dispersion or diffusion coefficient [length2/time],
U = transport coefficient [length/time].
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The model describes the changes in concentration c as a function of
the location and the time t due to a convective transport of particle col-
lectives and random particle motions. The mixing mechanism caused
by randomparticlemotions is referred to as dispersion, whereas convec-
tion leads to large-scale distribution by directed motions of the material.
Convective particle transport is characterized by the transport coefficient
Uwith the dimension of speed. To distinguish Fickian diffusion in the gas
or liquid phase from the stochastic motion of particles in solids, the dis-
persion coefficient D is used. Both the diffusion coefficient of fluids and
the dispersion coefficient of solids are mathematically the same and
characterize the mobility of particulate material. While the mobility of
molecules in fluids depends on the temperature, themobility of particles
in bulk materials depends on their physical properties (shape, surface,
size) as well as on the introduced kinetic energy.Without external ener-
gy, the particles in bulk materials fix each other in their positions. This
leads to the difficulty of separating the particle motions into dispersive
and convective movement processes. According to Daumann et al. [14],
the dispersion coefficient is therefore an integral parameter in batchwise
operating mixers, which describes the homogenization in concentration
by random particle movements resulting from the rotatingmixing tools.

If the mixed particles differ in their movement behavior because of
differences in particle size and shape or density, the homogenization
process can be influenced by segregation effects. Due to higher particle
mobilities, for instance, smaller particles are transported faster to the
bottomof themixer than bigger ones. Because of such effects, themixing
process can be influenced by segregation. The transport coefficient is
used as a measure of segregation effects caused by convective particle
transportation [7,15]. As long as the physical properties of the two parti-
cle components are the same, the dispersion model can be used without
the convective term to characterize a mixing process [12,14]. This indi-
cates that the concentration balance during themixing process is charac-
terized by purely dispersive mixing. For time-independent coefficients,
neglecting the convective term and adaptation to a cylindrical mixing
vessel, the dispersion–convection Eq. (1) transforms to [16]:

∂c z; r; θ; tð Þ
∂t ¼ ∂2c z; tð Þ

∂z2
DZ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

axial

þ 1
r
∂c r; tð Þ

∂r þ ∂2c r; tð Þ
∂r2

 !
Dr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

radial

þ 1
r2

∂2c θ; tð Þ
∂θ2

 !
Dθ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tangential

;

ð2Þ
where:

θ = tangential coordinate, angle [°],
z = axial coordinate [mm],
r = radial coordinate [mm],
Dξ= z,r,θ= axial, radial, and tangential dispersion coefficient [mm2/s].

Eq. (2) describes the dispersion in all three directions at the same
time. For comparison and determination of the three different disper-
sion coefficients each direction is considered individually. Fig. 1 illus-
trates the three different initial conditions used in the experiments to
compare axial, radial, and tangential mixing. The red tracer particles as
well as the transparent filler particles are added to the mixing vessel
with self-made devices in such a way that the particles can be seen per-
fectly separated.

2.1. Axial dispersion

If only the axial particle movements are considered, the spatial coor-
dinates r and θ disappear and Eq. (2) simplifies to axial dispersion
Eq. (3):

∂c z; tð Þ
∂t ¼ ∂2c z; tð Þ

∂z2
DZ : ð3Þ

For Eq. (3), a variety of solutions results for different initial condi-
tions. An overview of initial conditions is given by Sherritt et al. [10].

To investigate axial dispersion, a thin layer of red tracer particles is
added perpendicularly to themixer axis z at the top of the bulkmaterial
as shown in Fig. 1a. At the beginning of the mixing process, all tracer
particles (c = 1) are located on the surface of the bulk material, while
the absence of tracer particles in the bulk material is defined by c = 0.
The step function in Eq. (4) precisely characterizes the initial conditions
of the experimental procedure:

c z;0ð Þ ¼ 1;
c z;0ð Þ ¼ 0;

0≤ z≤ Zi;
Zib z≤ Z0;

ð4Þ

where Z0 corresponds to the height of the bulk material in the mixing
vessel and Zi is the border radius between the differently colored parti-
cle fractions. The average tracer concentrationcand Zi correlatewith the
as c ¼ Zi=Z0. No dispersion at the surface of the bulk material and the
bottom of the mixing vessel is described by disappearing concentration
gradients at all points of the surface and the bottom:

∂c z; tð Þ
∂z z¼0

¼ 0;
∂c z; tð Þ

∂z z¼Z0

¼ 0 : ð5Þ

The boundary conditions ensure that the concentration tends to the
average concentration with increasing mixing time. Under the initial
and boundary conditions mentioned, the solution of axial dispersion
Eq. (3) is given by [11]:

c z; tð Þ ¼ cþ 2
π

X∞
n¼1

e
−n2π2 DZ t

Z0
2 sin nπcð Þ

n
cos nπ

z
Z0

� �
; ð6Þ

where n is an integer and DZ the axial dispersion coefficient. If the aver-
age tracer concentration is given and the height of the bulk material is
constant, the concentration depends on the position, mixing time, and
axial dispersion coefficient. The concentrations versus axial positions
and mixing time for an arbitrary dispersion coefficient are plotted in
Fig. 2a in order to illustrate Eq. (6). In the latter, the selected values of
the variables c; Z0; Zi correspond to the dimensions of the experimental
procedure. At the beginning, all tracer particles are located on the sur-
face of the bulk material. With the passage of time, the tracer particles
distribute in the bulk over the entire height of the mixture until a uni-
form concentration c z; tð Þ ¼ c is reached at all positions. The concentra-
tion tends rapidly or slowly to the average tracer concentration as the
dispersion coefficient is selected high or low, respectively. A high dis-
persion coefficient means quickly disappearing gradients, which in
turn describe rapid attainment of homogeneity.

2.2. Radial dispersion

Considering only the radial direction by neglecting the coordinates z
and θ, the dispersion model simplifies to Eq. (7):

∂c r; tð Þ
∂t ¼ 1

r
∂c r; tð Þ

∂r þ ∂2c r; tð Þ
∂r2

 !
DR: ð7Þ

Eq. (7) has already been used for modeling themixing of particulate
solids accompanied by segregation in a horizontally rotating drum
mixer [17]. Therein, particle concentration is described as a function of
the time and the position for a radially mixed two-component system.
Under certain initial and boundary conditions, Eq. (7) can be solved

Table 1
Zeros of the Bessel function J1(λnR0) = 0.

λ1R0 3.832
λ2R0 7.016
λ3R0 10.173
λ4R0 13.324
λ5R0 16.471
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