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Tube mills use steel balls as grinding media. Due to wear in the abrasive environment it is necessary to charge
new balls periodically tomaintain a steady balanced ball charge in themill. The amount and ball size distribution
in this charge, as well as the frequency with which new balls are added to themill, have significant effects on the
mill capacity and the milling efficiency. Small balls are effective in grinding fine particles in the load, whereas
large balls are required to deal with large particles of coal or stone contaminant. The steady state ball size
distribution in the mill depends on the top-up policy.
The effect of the ball size distribution on the milling rate of coal has been measured as a function of ball size
distribution. The change in ball size distribution as affected by wear and ball top-up policy has been modelled.
From this a best ball top-up policy can be recommended that will ensure a close approximation to the desired
steady-state ball size distribution that gives the required PF size distribution for the selected mill demand.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The expected grinding performance of amill can be estimated by ap-
plying phenomenological grinding kinetic theory that relies on a rate of
the process as characterised by the selection function and breakage
product distribution known as the breakage function. This approach is
nowwell established and has been discussed extensively by prominent
researchers such as Austin et al. [1] and Herbst and Feurstenau [2].

Elaborate batch experiments can be conducted on a sample of the
material to obtain relevant parameters that describe the process within
the testmill. The parameters can then be applied to other environments
by appropriately scaling up to the new milling conditions.

In our approachwe used the standardmethodology [3] to obtain the
selection and breakage function parameters for our batch experiments.
We then applied the recommended approach [1,4] to scale-up to a dif-
ferent mill size and different ball size distribution. The procedure is
explained in detail in the experimental section.

The ball size distribution (BSD) in a mill is usually not known, as the
measurement of the charge size distribution requires dumping the load
and laboriously grading the balls into size classes. Fortunately we had
one set of data as discussed below. The general non-availability of BSD
necessitates the use of ball wear theory to estimate BSD as required.
The development of this theory is tackled in the following section, and
validated against this set of data.

One BSD data set was made available when a plant dumped the
charge and used an in-house developed device to grade the balls. This

device comprised two counter-rotating rods with increasing space
between them towards the lower end. As balls rolled between these
rods they fell through the gap in accordance with their size. The charge
graded in this way was used to establish wear parameters [5].

2. Modelling ball wear in the mill

2.1. Ball shrinking theory

A ball once introduced in the mill will on a continuous basis be sub-
ject towear as it interacts with particles, other balls and internal surface
of the mill. The rate at which material is removed from a ball is propor-
tional to the surface area of the ball at that moment in time, which can
be written mathematically as:

−dV tð Þ
dt

∝ 4π r tð Þ2 or
dV tð Þ
dt

¼ −4k1π r tð Þ2 ð1Þ

where V(t) represents the instantaneous volume of the ball, r(t) is the
instantaneous radius of the ball, and k1 is the constant of proportionality
that takes into account the material from which the ball is made. The
minus sign indicates that the ball reduces in size as time progresses.

By doing appropriate mathematical treatment with similar assump-
tion used by previous authors [6,7] the ball wear can be represented as
follows:

r2
dr
dt

¼ −crn n can be 1;2 or 3: ð2Þ
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This holds when wear rate is proportional to the diameter, surface
area or volume. However, if the power is not a whole number, then
wear rate can be considered to be a combination of at least two factors.
For a wear rate that is dependent on both surface area and volume, 2 b n
b 3 would be the applicable domain.

Eq. (2) can be simplified as follows:

r−Δdr ¼ −cdt with Δ ¼ n−2: ð3Þ

Eq. (3) can be expressed in terms of diameter and integrated to give:

d tð Þ ¼
d0 exp −k t−t0ð Þ½ � if Δ ¼ 1

d1−Δ
0 −k 1−Δð Þ t−t0ð Þ

h i1= 1−Δð Þ :

(
ð4Þ

A Δ value of 0.2 is suggested by Austin et al. [1] for almost all cases
of dry milling. This value provides an important starting point as the
historical data from Power Stations is usually not of sufficient quality
for determining both wear parameters, Δ and k. To determine both pa-
rameters we would need to know the initial BSD in the mill, the top-up
policy and have an accurate determination of the final BSD when the
charge is dumped. It is this latter aspect that is problematic with the
Power Station's data. However, if we only have to find k then the final
BSD is not needed and the final dump mass of the steel would suffice.
This assertion is justified below.

2.2. Steady state simulation

By treating the ball addition rate to maintain the same charge mass
as a mass balance problem, Austin and Klimpel [6] have derived the
equations that give the steady state BSD when one-ball and two-ball
top up sizes are used as given below.

P dð Þ ¼ d4−Δ−d4−Δ
min

d4−Δ
max −d4−Δ

min

for a single makeup ball size;dmax; ð5Þ

where P(d) is the mass fraction of balls in the load which are smaller
than d. For two makeup ball classes, d1 and d2 of mass fraction m1 and
m2 respectively:

P dð Þ ¼
d4−Δ−d4−Δ

min

Kd4−Δ
max þ 1−Kð Þd4−Δ

2 −d4−Δ
min

; dmin ≤ dbd2

Kd4−Δ þ 1−Kð Þd4−Δ
2 −d4−Δ

min

Kd4−Δ
max þ 1−Kð Þd4−Δ

2 −d4−Δ
min

; d2bd≤ d1 ¼ dmax

:

8>>>><
>>>>:

ð6Þ

These equations were incorporated into our simulation software
that was written to take the initial steady-state BSD as given by
Eqs. (5) or (6), the details of the top-up policy and calculate the BSD
at any given time t. This however required an initial estimation of the
wear parameter K which was made possible by the availability of the
dumped load data. The parameter is calculated as follows:

K ¼ 1þm2

m1

d1
d2

� �3� �−1

: ð7Þ

Once the wear parameter value K is known it is possible to use
Eq. (4) to numerically simulate the wear of every ball in the mill for
any timeduration and thus calculate the BSD at any given timeprovided
that the initial BSD and ball top up schedule are known. With the
numerical scheme, the BSD can be computed for any specified period
of time and for more than two top-up sizes. The top-up size can also
be changed at any time and the computation of the BSD can proceed.

Note that the steady-state shape of P(d) is a function only of Δ and
the top-up policy (TUP), and not a function of the wear rate k. In order
to check the value of Δ we use some steady-state P(d) data collected
at Matimba coal mine [5]. It is seen in Fig. 1 below that the value
suggested by Austin of Δ = 0.2 [1] works very well.

The ability to estimate BSD for any top-up policy (TUP) enabled us to
predict grinding performance of the mill under varied conditions. Our
BSD calculations had to be combined with the batch grinding data

Fig. 1.Model prediction of Matimba steady BSD using Δ = 0.2.

Table 1
The EQM ball size distribution that was used in the batch tests.

Size class [mm] Mass [kg] Mass fraction Number of balls

44.0–50.0 16.475 0.400 40
37.5–44.0 10.635 0.258 40
31.5–37.5 6.490 0.158 38
26.5–31.5 3.850 0.093 38
20.4–26.5 2.305 0.056 40
15.0–20.4 1.390 0.034 40
Totals 41.205 1.000 236

Table 2
The S-values for the eight prepared samples.

Size (microns) S-values [min−1]

−26500 + 22400 1.2366
−19000 + 16000 2.0439
−13200 + 9500 2.6860
−6700 + 4700 2.5344
−3350 + 2360 1.7340
−1700 + 1180 0.8297
−850 + 600 0.4465
−300 + 212 0.2622

Fig. 2. Selection function for the coal sample ground in 0.55 diameter mill.
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