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For many years, nanoparticles have garnered increasing interest in pharmaceutical investigations. It is well
known that the solubility of nanoparticles increases with decreasing size due to the Gibbs–Thomson effect. How-
ever, there are currently no analytical models to describe the kinetics of nanoparticle dissolution. The purpose of
this article is to provide a Thermodynamics-based description of the kinetics of nanoparticle dissolution. In par-
ticular, the Ostwald–Freundlich relation is used to correct dissolution times for small particles, which have higher
solubilities than larger particles. The developed model is an extension of the Hixson–Crowell cube root law in
which the total normalized dissolution time is corrected by a “solubility size factor” that approaches unity for in-
creasing initial particle size. This model enables rapid estimation of the total dissolution time of spherical nano-
particles in a gently agitated, zero solute concentration reservoir. The total dissolution time predicted differs from
Hixson–Crowell by nearly 10% for initial particle sizes fifty times larger than the characteristic particle size, and
increases to more than a factor of six at the characteristic particle size. This work provides a physics-based de-
scription of the nanoparticle dissolution kinetics and details the reaches and limitations of the developed
model. The theoretical framework provided herein is valid for a wide range of dissolution processes and size
scales affording it a high level of practicality.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The low aqueous solubility of new chemical entities is one of the
major hurdles pharmaceutical scientists have been facing for more
than thirty years. The solubility and the dissolution rate of drug particles
are relevant to the bioavailability of oral solid dosage forms [1], because
most drugs need to be dissolved in order to enter the body [2]. The im-
provement of the solubility and dissolution rate has been the focus of a
tremendous amount of pharmaceutical research for several years [3,4].

Drug nanosizing is one common strategy [5] in particular because it
increases the drug solubility. Although numerical methods have been
used to successfully model the dissolution kinetics of nanoparticles
[6], analytical models that capture the size effects on the rate of dissolu-
tion remain unavailable. In this context, the present article defines an
analytical description to describe the dissolution kinetics of nanoparti-
cles. Specifically, the Ostwald–Freundlich law is integrated with the
Hixson–Crowell law to describe the dissolution kinetics of nanometer
scale particles. In contrast to numerical techniques such as those de-
scribed by Johnson [6], themodel developed hereinmay be used to rap-
idly estimate dissolution times for different sized particles and predict

whether the Gibbs–Thomson effect will significantly contribute to en-
hanced dissolution times.

In 1904, E. Brunner [7], a former student of W. Nernst, published the
derivation of the well known Nernst–Brunner law with Nernst's bless-
ing [8] making use of A. Noyes's and W. Whitney's static diffusion
layer concept [9]. Noyes and Whitney proposed that a static diffusion
layer of thickness δ subjected to an equilibrium concentration, cs, at
the surface of an object in a mixing fluid [9] (See Fig. 1). Thus, the disso-
lution occurs at steady state through diffusion across the diffusion layer.
For a diffusion-limited system, the rate of dissolution is thus obtained by
solving Fick's laws for the boundary conditions shown in Fig. 1, which
yields the Nernst–Brunner law [7,8]:

dm
dt

¼ DA
δ

cs−cð Þ: ð1Þ

Here, dm/dt is the rate at whichmass leaves the surface of the parti-
cle, D is the diffusivity, and A is the surface area of the solute exposed to
the solvent.

A. Hixson and J. Crowell [10] extended the Nernst–Brunner concept
to model the dissolution of an individual particle, by considering the
time-dependence of the surface area during particle dissolution. This
is done by writing the area, A, in Eq. (1) as a function of the remaining
particle mass, mR, and integrating. The Hixson–Crowell cube root law
[10] relates the initial particle mass, mo, and the remaining particle
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mass, mR, to the dissolution time, t, via a proportionality constant, KHC,
which accounts for the effect of particle geometry and density on the
mass transfer to the solvent:

m1=3
o −m1=3

R ¼ KHCt: ð2Þ

For spherical particles, KHC = D(cs − c)δ−1(4π/3)1/3ρ−2/3.

2. Results and discussion

2.1. Size dependence

In a binary system containing solvent atoms (A) and solute atoms
(B), β-phase particles of pure B exist in equilibrium with the surround-
ing A-rich α-phase at the equilibrium concentration of B in A, that is, at
the solubility limit, cs. It is well-known that the equilibrium concentra-
tion of B atoms in the vicinity of β-phase particles increases with
decreasing size of the β-phase particles [11–13]. In limit of ideal solu-
tions, the relationship between solubility and particle size is given by
the Ostwald–Freundlich equation, which is a special case of the Gibbs–
Thomson effect [14–19]:

c1
c2

¼ exp 2γsl
Vc

RT
1
r1

− 1
r2

� �� �
ð3Þ

where c1 is the solubility of a spherical particle with radius, r1, and c2 is
the solubility of a spherical particle with radius, r2. For a large radius, r2,
the interface between the particle and solvent is comparatively flat, so
c2 ≈ cs

∞ where cs
∞ is the solubility of a flat surface, i.e., r = ∞, and thus

ĉs ¼
cs
c∞s

¼ exp
2γslVc

rRT

� �
ð4Þ

where ĉs is the normalized solubility limit. This equation is analogous to
equilibrium vapor pressure of a liquid droplet suspended in a gas of the
same substance [20], which leads to analogous evaporation kinetics.

In terms of normalized radius, r̂ ¼ r=r ′where r′= 2γslVc/RT, Eq. (4)
is

ĉs ¼ exp
1
r̂

� �
ð5Þ

r′=2γslVc/RT is the critical size for nucleation [11] of a hypothetical
substance with a Gibbs free energy of formation equal to RT/Vc.

The validity of the Ostwald–Freundlich relation has been challenged
in recent years by G. Kaptay [21–23], who argues that Ostwald's equa-
tion [13] should be used in its original form in lieu of the modified
form given by Freundlich [14]. In this context, G. Kaptay argues that
the factor of 2 in Eqs. (3) and (4) should be changed to 3. Thus, the char-
acteristic radius, r′, would be r′=3γslVc/RT. Such a value corresponds to
the radius at which the Gibbs free energy of transformation is zero for a
substance with a Gibbs free energy of formation equal to RT/Vc rather
than the critical radius of nucleation. Such change is relatively minor,
but this is noted herein.

For a dimensionless mass, m̂ ¼ m=m′ where m′ = (4πρ/3)r′3, and a
dimensionless time, t̂ ¼ t=t ′where t′=2γslVcδρ/cs∞DRT, Eq. (1) reduces
to:

dm̂
dt̂

¼ 3A RTð Þ2
16πγ2

slV
2
c

ĉs−ĉð Þ: ð6Þ

This is the dimensionless form of the Nernst–Brunner equation.
Here,m′ is the mass of a particle of radius r′, and t′ is the characteristic
time. Physically, t′ = tDΓ, is the characteristic diffusion time, tD = δ2/
4D, across a distance, δ, multiplied by a dimensionless constant, Γ =
8γslVcρ/δcs∞RT. Eq. (6) shows that the dissolution rate increases as the
square of the temperature and linearly with the thickness, δ, of the
diffusion layer. Also, the dissolution rate is a quadratic function of the
surface energy and has a great impact on the dissolution rate. Thus,
surfactants are effective dissolution aids because they increase the wet-
tability, which in turn increases the dissolution rate. In the Ostwald–
Freundlich limit, solute dissolution is shut down entirely, i.e., dm̂=dt̂ ¼
0, when ĉ ¼ ĉs, and precipitation occurs at a rate dm̂=dt̂b0 for supersat-
urated solutions when ĉNĉs.

Similarly, substituting mo ¼ m̂om′;mR ¼ m̂Rm′; t ¼ t̂t ′; c ¼ ĉc∞s ; and
cs ¼ ĉsc∞s into Eq. (2) yields the dimensionless form of the Hixson–
Crowell cube root law upon expansion and rearrangement:

m̂1=3
o −m̂1=3

R ¼ ĉs−ĉð Þ̂t: ð7Þ

The solubility dependence on particle size directly impacts thedisso-
lution rate of small particles due to the increased solubility predicted by
the Ostwald–Freundlich equation (Eq. (4)). During dissolution, de-
creased particle size leads to an increased solubility with time and a
shorter total dissolution time than that predicted by the Hixson–
Crowell law (Eq. (2)).

The time dependence of the solubility is accounted for by expressing
the Nernst–Brunner law (Eq. (1)) in terms of the remaining mass, mR,
and then substituting the Ostwald–Freundlich relation in place of the
solubility. The rate of change of the remaining mass is the negative of
the rate change of the mass dissolving, i.e., dm̂R=dt̂ ¼ −dm̂=dt̂, and the

surface area of a spherical particle in terms of mR, A ¼ αm2=3
R ¼ α

m′m̂Rð Þ2=3 where α = (3/ρ)2/3(4π)1/3. The Ostwald–Freundlich relation
is expressed in terms of the dimensionless particle mass (assuming a

spherical particle) by substituting r̂ ¼ m̂1=3
R into Eq. (5) to yield ĉs ¼ exp

1=m̂1=3
R

� �
. Within the limits of a constant background solute concentra-

tion of c = 0 in the dissolution medium, the dissolution rate corrected
for the size dependence of the solubility is

dm̂R

dt̂
¼ −3m̂2=3

R exp
1

m̂1=3
R

 !
: ð8Þ

Eq. (8) is rearranged to solve for the dissolution time as:

Z
dm̂R

m̂2=3
R exp

1

m̂1=3
R

 ! ¼ −3
Z

dt̂ ð9Þ

Fig. 1. Schematic of the diffusion layer proposed by Noyes and Whitney [9]. x = 0 repre-
sents the solid–liquid interface at the equilibrium concentration, cs. The concentration
in the diffusion layer drops to the solvent concentration, cδ, at x = δ, as shown by
Brunner [7].
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