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Hopper flow characteristics are significantly affected by particle shape. In this work, ellipsoidal particles which
can represent a large number of shapes are used to investigate the shape effect on granular flow in a cylindrical
hopper. Numerical experiments are conducted by use of the discrete elementmethod,with its validity verified by
comparison with the results from physical experiments. The results indicate that particle shape can make a sig-
nificant effect on the flow pattern. In particular, the increase of deviation from spheres can decrease the mixed
region adjacent to the side wall, and increase the stagnant zone at the bottom corner. It may also lead to
decreased wall stress. Furthermore, particle shape has a significant effect on the discharge rate. Spheres of
unity aspect ratio have the highest flow rate, and the lower or higher aspect ratio, the smaller the flow rate.
Based on the numerical results, the Beverloo equation is modified, where parameters C and k in the equation
are respectively formulated as a function of aspect ratio.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hoppers are widely used in many industries such as mining, metal-
lurgy, and food industries. To develop a comprehensive understanding
of the dynamic behavior of granular flow in a hopper, extensive studies
have been carried out by means of analytical, experimental and numer-
ical approaches. In particular, discrete element method (DEM) plays an
important role as it takes into account the discrete nature of granular
materials without requiring any global assumption needed in the previ-
ous macroscopic approaches and thus allows a better understanding of
theunderlyingmechanisms. As summarized by Zhuet al. [1], the studies
of hopper flow by DEMmainly include wall stress/pressure, discharge
rate and internal properties. In particular, prediction of the discharge
rate is of importance for the design of reliable and controllable transport
systems, and is difficult due to the complexity associated with granular
flow such as inhomogeneous solid distribution, irregular velocity profile
and diverse particle size and shape [2]. DEM simulations have been con-
ducted bymany investigators to predict discharge rate, showing a good
agreement with experiments [3–5] and empirical predictions [6–8],
particularly by the Beverloo equation [9]. Generally speaking, the
Beverloo equation gives a good prediction for spherical particles. How-
ever, its predictability decreases with shape increasing deviation from
spheres.

Many attempts have been made to examine the effect of particle
shape on the discharge rate using DEM approach [10–19]. For example,
Cleary [16] used the “super-particle” approach to identify the rela-
tionship between particle shape and hopper discharge rate, indicat-
ing a linear decrease in mass flow rate with increasing particle
elongation. Langston et al. [13] found that elliptical particles of
aspect ratio 5 are discharged 40% faster than circles, which was ex-
plained by particle alignment yielding a lower resistance to flow.
But friction between particles was ignored in their work. Li et al.
[14] studied the effect of inter-particle friction, and found that fric-
tion has little effect on the flow rate. But friction is reported to have
a significant effect on discharge rate for elongated ellipsoids [15].
Fraige et al. [11] compared experimental results and DEM simula-
tions for cubic and spherical particles, and demonstrated that cubes
did not flow readily. This was ascribed to the geometric locking
with cubes compared to spheres.

How particle shape affects discharge rate is not consistent in the
above studies, influenced by model types (two dimensional or
three dimensional), particle shapes (cubes, “super-particle”, ellipse
and ellipsoids), or particle properties (e.g. friction coefficients). The
resulting understanding is fragmental without a clear picture on
the effect of particle shape on the discharge rate. Also, the validity
of the Beverloo equation to predict the discharge rate of ellipsoids,
and its modification for ellipsoids and other shaped particles have
not been addressed.

In this work, steady-state granular flow in a cylindrical hopper
with a flat bottom is investigated by DEM. Ellipsoidal particles with
awide range of aspect ratios (from0.3 to 3.0) are used in the simulation.
The DEM model is firstly validated by comparison with physical
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experiments, then the effect of aspect ratio on flow patterns is
discussed. Finally, the discharge rate for different aspect ratios is inves-
tigated, and the Beverloo equation is modified to take into account the
effect of particle shape.

2. Model description

Techniques for DEM modeling of non-spherical particles have been
reported in the literature [20]. In particular, a number of investigators
have contributed to the modeling of ellipsoids [20–25]. The present
DEM model is largely developed on this basis, and has been used to
study packing [26] and gas fluidization of ellipsoids [27]. For complete-
ness, a brief description of the DEM method used is given below.

A given particle in a granular system can have two types of motion:
translational and rotational. During its movement, the particle may in-
teract with its neighboring particles or walls, through which momen-
tum and energy are exchanged. Newton's second law of motion is
used to describe the motion of individual particles. Thus, at any time t,
the equations governing the translational and rotational motion of par-
ticle i are respectively given as

mi
dvi
dt

¼
Xki
j¼1

fc;ij þ fd;ij
� �

þmig ð1Þ

and

Ii
dωi

dt
¼

Xki
j¼1

Mt;ij þMn;ij þMr;ij

� �
ð2Þ

where vi andωi are the translational and angular velocities of the parti-
cle, respectively, and ki is the number of particles interacting with the
particle. As shown in Fig. 1, the forces involved are: the gravitational
force mig, and inter-particle forces which include elastic force fc,ij and
viscous damping force fd,ij. The torques acting on particle i by particle j
include: Mi,ij generated by the tangential force, Mr,ij commonly known
as the rolling friction torque, and also the torque Mn,ij generated by
the normal force when the normal force does not pass through the par-
ticle center.

Equations used to calculate the interaction forces and torques be-
tween two spheres have been well-established and widely used in
the literature [28–30]. In this proposed model [26,27], the non-
linear model for spheres is extended to ellipsoids and listed in
Table 1. As noted above, an additional torque (Mn,ij) is introduced,
which results when the normal force does not pass through the cen-
ter of an ellipsoid and, together with the tangential forces and rolling
torque, governs the rotational motion of a particle. Another parame-
ter is the so called reduced radius R* in the calculation of the contact
forces between particles i and j. For spheres, R* = RiRj / (Ri + Rj)

where Ri and Rj are radii of particles i and j, respectively. But for ellipsoi-
dal particles, R* = (A′B′)−0.5 / 2 where A′ and B′ are related to the radii
of the particle shape curvature at a contact point. More details of the de-
termination of A′ and B′ can be seen elsewhere, e.g. [31].

The explicit time integration method is widely used to solve the
translational and rotational motions of a system of discrete particles in
DEM simulations [32]. Although it is established for spheres, such a
method can be extended to ellipsoids. The difficulties associated with
the extension mainly lie in two aspects: particle–particle detection
and particle orientation, which are briefly given below.

(i) Particle–particle contact detection. The detection of particle con-
tacts for ellipsoids is much more complicated than spheres. Var-
ious analytical methods are available to detect the contacts
between ellipsoids, e.g. intersection algorithm [21], geometric
potential algorithm [22–24], and commonnormal algorithm [23].
As the geometric potential algorithm is more reliable [20], it is
hence used in the present model. In particular, the algorithm
used in [23,24] is employed. Thus, as shown in Fig. 1, point Ci is
defined as the “deepest” point of ellipsoid i penetrating into j in
their collision, and can be determined through a numerical pro-
cedure detailed in [23,24]. The contact point between ellipsoids
i and j is defined as the midpoint of the line connecting Ci and
Cj, and then the normal and tangent planes are defined on this
basis. The distance between the two special points is regarded
as the particle overlap δijwhichwill be used to calculate themag-
nitude of normal contact force between particles i and j. It should
be pointed out that the computational time for contact detection
is huge. This is largely because the algorithm used to determine
one contact point involves the numerical solution of a sixth-
order polynomial equation [23].

(ii) Particle orientation. Particle orientation is another parameter
that must be considered for non-spherical particles. It is gen-
erally described by three Euler angles (ϕ,θ,ψ) [33]. Briefly, at
each time step, for the convenience of determining the inertia
tensor Ii of an ellipsoid, the rotational equation expressed by
Eq. (2) in the space-fixed coordinate system (x,y,z) is converted
to the body-fixed coordinate system (x′,y′,z′) which is a moving
Cartesian coordinate system fixed with the particle and whose
axes are superposed by the principal axes of inertia. Thus, in
this converted coordinate system, the angular velocities ω′i of
particles can be calculated as used for spheres; they are then
used to determine the new three Euler angles on the basis of
the so-called quaternionmethod.More details about themethod
can be found elsewhere (see, for example, [33]).

3. Simulation conditions

A packing is formed first in a cylindrical hopper with the diameter of
0.3 m. An orifice is located in the central flat bottom with its diameterFig. 1. Two-dimensional illustration of forces acting on ellipsoid i in contact with j.

Table 1
Components of forces and torques acting on ellipsoidal particle i.

Forces Equations

Normal elastic force (fcn,ij) −4=3E�
ffiffiffiffiffi
R�p

δ3=2n n
Normal damping force (fdn,ij) −cn 8mijE

� ffiffiffiffiffiffiffiffiffiffi
R�δn

p� �1=2
vn;ij

Tangential elastic force (fct,ij) −μs fcn;ij
�� �� 1− 1−δt=δt;max

� �3=2� �
δ̂t

Tangential damping force (fdt,ij) −ct 6 μsmij fcn;ij
�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−δt=δt;max
p

=δt;max
� �1=2

vt;ij
Coulumb friction force (ft,ij) −μs fcn;ij

�� ��δ̂t
Torque by tangential forces (Mt,ij) Rc,ij × (fct,ij + fdt,ij)
Torque by normal force (Mr,ij) Rc,ij × (fcn,ij + fdn,ij)
Rolling friction torque (Mr,ij) μr;ij fn;ij

�� ��ωn
ij

Where 1/mij = 1/mi + 1/mj, E* = E/2(1 − ν2), ωn
ij ¼ ωn

ij= ωn
ij

��� ��� , δ̂t ¼ δt= δtj j , δt,max =
μs(2 − v)/2(1 − v) ⋅ δn, vij = vj − vi + ωj × Rc,ji − ωi × Rc,ij, vn,ij = (vij ⋅ n) ⋅ n,
vt,ij = (vij × n) × n. Note that tangential forces (fct,ij + fdt,ij) should be replaced by
ft,ij when δt ≥ δt,max.
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