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Dumbbell shaped aggregates are small particles synthesized in precipitation reactors. Their characterization by
optical methods needs the chord length distribution (CLD) of such a shape. We present in this paper the analyt-
ical calculation of two CLDs corresponding to two different definitions of CLD. ComparisonwithMonte-Carlo sim-
ulations is presented. Good agreement is found between the exact calculation and simulations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Manymanufacturers use solid micro-particles in suspension for var-
ious applications: ceramics, paintings, pharmaceutics, cosmetics, food
and chemicals. Particle sizing can be performed by physical methods
based on the scattering between the particles and an incident electro-
magnetic wave. The scattered wave is depending on the particle mor-
phology and on the ratio between the refractive indices of particle
material and suspending medium. Depending on the particle material
and the selected method the measured signal may be straightforwardly
related to the chord length distribution (CLD) of the randomly orientated
particle set. This is illustrated by three examples:

– Small-Angle Scattering (SAS) measurements [1] are suitable for
nano- and micro-particles interacting with X-rays. This method
can be extended to the optically soft micro-particles interacting
with light [2].

– Focused Beam Reflectance Measurements (FBRMs) are among the
most widely used techniques for particle sizing [3]. It uses a focused
beam of laser light that scans across particles passing in front of the
probewindow tomeasure a chord length distribution. The interpre-
tation of the signal is only based on the reflected light. Thismethod is
suitable for particle size higher than 5 μm.

– Spectral Turbidimetry, i.e. extinction measurement, is an optical
method to measure the light scattering or extinction cross section

of particles. In the case of large micro-particles (N1 μm) and very
small optical contrast, extinction or forward scattering can be ex-
plained in the framework of anomalous diffraction approximation
[2]: then the scattering cross section is expressed as an integral in-
cluding the particle CLD. Anomalous diffraction approximation was
applied to a sphere, an infinitely long circular cylinder, a prism
column, a hexagonal crystal of ice, ellipsoids and a finite cylinder [4].

Depending on the physical principles ofmeasurement the definition
of the CLD for a given object changes: 3D isotropic uniform flow of infi-
nite straight lines in the case of SAS and turbidity measurements, or 2D
isotropic uniform flowof infinite straight lines for each projected area in
the case of FBRM.

The CLD of convex and non-convex bodies has been studied from a
mathematical point of view. Explicit expressions have been obtained
for bounded 2D or 3D convex domains: disk, triangle, rectangle, regular
polygon [5], sphere, hemisphere [6], cylinders of various cross sec-
tions [7,8], spheroids, and polyhedron [9]. Moreover, Aharonyan [10]
obtained an explicit expression for the orientation-dependent CLD for
any bounded convex body.

Non-convex bodies have paid less attention than convex ones.
Mazzolo et al. [11] discussed the CLD in the context of reactor physics.
They show that some relations between lower moments of CLD and
simple geometric properties as volume, surface,… of the body remain
valid for non-convex bodies whereas higher CLD moments do not
obey the simple relations valid for convex bodies. Gille [12] studied
the CLD of an infinitely long circular hollow cylinder that is a special
case of non-convex body; the corresponding calculation is based on
basic principles. Gille [13] also considered two parallel circular cylinders
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separated by a short distance and calculated the 3D-correlation function
that is related to CLD. Vlasov [14] introduced the notion of signed chord
distribution for convex and non-convex bodies. He started from the
work of Dirac transforming the six-dimensional integral of pairwise in-
teraction potential for a convex body into a simpler expression includ-
ing the CLD; he extended it to a non-convex body. He showed that the
expression of the integral is much more complicated than the one for
convex body: it can be decomposed into several terms (integrals),
each one related to the various segments of the given chord inside the
non-convex body. He formally deduces the expression of the CLD for
the non-convex case.

Among the particle shapes observed in industrial processes, small
clusters of spherical particles are often present. By thepastwe calculated
[15] the CLD for a two-sphere aggregate. In this paper we extend this
calculation to a set of two spheres penetrating each other. For instance,
these dumbbell-like particles appear in the precipitation of inorganic
compounds performed at high supersaturation and weak aggregation
conditions. Polymeric colloids with such a morphology are also synthe-
sized [16].

Section 2of this paper develops a methodology in order to calculate
the CLD of a dumbbell shaped aggregate. It is followed by a comparison
with Monte Carlo Simulations in Section 3. Section 4 is devoted to con-
cluding remarks.

2. Calculation of the chord length distribution

A straight line may intersect more than one time across a non-con-
vex body. As a consequence, two CLD can be defined:

– Themultiple chord distribution (MCD)where each segment interval
on the same line is considered as one chord length separately. FBRM
measurements are associated to MCD.

– The one chord distribution (OCD) where the sum of chord lengths
for all intersected intervals is used as the definition of the chord
length. SAS and turbidity measurements are associated to OCD.

Even if the latter ones only consider OCD, we will present both OCD
andMCD calculations with 3D uniform flow of lines. The corresponding
procedure is similar to the one used for a two-sphere aggregate [15].

Throughout the paper, the chord length distribution (density)
is written D(l). D(l)dl is the number of chords within the l-range

[l, l + dl]. D(l) is normalized, i.e. ∫
lmax

0

D lð Þdl ¼ 1.

2.1. Definition of the different geometrical areas

In the following of the paper, points will be denoted by lower-case
letter (except the origin O of the coordinate system), line by upper-
case letter, area by upper-case letter within parentheses and a volume
by upper-case letter within brackets.

The dumbbell projection on a plane is considered. θ (0 ≤ θ ≤ π/2) is
the angle between the line binding the centers of the two spheres (radi-
us value equal to one) and the projection plane (coordinates x,y). The
distance between the two sphere centers is denoted δ. The center of
oneof the two spheres is chosen as the originO of the coordinate system
(Fig. 1). The projection of the dumbbell is represented in Fig. 2a–b for
two values of the θ angle and for a semi-plane. The circles C1 and C2 rep-
resent the projection of the spheres (disks (C1) and (C2)) whereas the
dashed curve (ellipse later called E1 in the paper) represents the projec-
tion of the circular junction J between the two spheres. Let us consider a
chord (perpendicular to the projection plane). According to the location
of its intersection (x,y) point with the plane this line may cross:

– one single sphere: the point belongs to (P1)
– the junction between the two spheres: the point belongs to (PJ)
– or successively the two spheres: the point belongs to (P12).

The (Pf) area that is bounded by C2 (and C1) and E1 is fictitious. Its
definition will be detailed hereafter.

The previously defined areas correspond to a full plane.
The ellipse E1 has some interesting properties:

– the coordinates of E1 center are (2δ cos(θ),0)
– the ellipse intersects the circles at the two b1 and b2 points (in fact

four points if one considers the other semi-plane). The coordinates
of the b2 point are (δ/(2 cos(θ)), (1 − δ2/(4 cos 2(θ)))1/2). The tan-
gent at this point is common to the circle and the ellipse.

– as the θ-angle increases E1 tends to a circle. E1 does not intersect C1
and C2 for θ N θE1 = a cos(δ/2)

– the equation of the E1 ellipse is:

x−δ cos θð Þ=2ð Þ2= sin2 θð Þ þ y2 ¼ 1−δ2=4 ð1Þ

– E1 and C2 intersect the horizontal axis at b1* and b1** respectively.
The area defined by b1, b1* and b1** is the one-fourth of (Pf).

2.2. Decomposition of the CLD

The CLD may be written as a sum of several partial CLDs.

Fig. 1. 3D drawing of the dumbbell shaped aggregate.

208 F. Gruy, S.-H. Suh / Powder Technology 253 (2014) 207–215



Download English Version:

https://daneshyari.com/en/article/236452

Download Persian Version:

https://daneshyari.com/article/236452

Daneshyari.com

https://daneshyari.com/en/article/236452
https://daneshyari.com/article/236452
https://daneshyari.com

