
Modified collective rearrangement sphere-assembly algorithm for
random packings of nonspherical particles: Towards
engineering applications

A. Bertei a,⁎, C.-C. Chueh b, J.G. Pharoah b,c, C. Nicolella a

a Department of Civil and Industrial Engineering, University of Pisa, Pisa, Largo Lucio Lazzarino 2 56126, Italy
b Queen's-RMC Fuel Cell Research Centre, 945 Princess St., 2nd Floor, Kingston, ON K7L 5L9, Canada
c Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N6, Canada

a b s t r a c ta r t i c l e i n f o

Article history:
Received 3 May 2013
Received in revised form 15 November 2013
Accepted 24 November 2013
Available online 8 December 2013

Keywords:
Packing algorithm
Random packing
Simulation
Nonspherical particles
Fuel cells
Agglomerates

A modified collective rearrangement algorithm, based on the sphere-assembly representation of the particle
shape, is presented for simulating random packings of nonspherical particles and arbitrary shapes. Compared
to other collective rearrangementmethods, the modification introduced by this algorithm consists in i) avoiding
the particle-to-container shrinking procedure by allowing particles to sequentially settle down and ii) in a stabil-
ity constraint applied to all the particles in the packing. The coupling of these criteria ensures that all the particles
are stable and contacting each other, allowing for an unambiguous detection of contacts, which is important in
the evaluation of the effective properties desired in many engineering applications, such as percolation thresh-
olds and effective conductivity. The effect of the internal parameters of the algorithm is investigated, showing
that random close packings can be obtained. The algorithm is applied to simulate packings of rigid ellipsoids
and cylinderswith different aspect ratios, which are comparedwith simulation results provided by other packing
algorithms, showing the consistency of our method. Simulations of inter-penetrating particles, mixtures of par-
ticleswith different shapes andpackings of agglomerates are shown,which confirm the applicability of themeth-
od to a broad range of packing problems of practical interest and, in particular, for fuel cell applications.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Random packings of particles are widely considered in science and
engineering applications: they have been suggested asmodels for liquid
and glass structure [1,2] and they are used to represent granular mate-
rials [3], packed beds, and cermets [4] as well as in many other applica-
tions. In the last decades, several packing algorithms have been
developed to represent the packing microstructure and for property
evaluation. Many algorithms have been developed in particular for
spherical particles: Monte-Carlo [5–7], drop-and-roll and sequential de-
position algorithms [8–13], collective rearrangement [14–16], discrete
element methods [17–19] and molecular dynamics [20,21] to cite the
most common ones.

Recently, in order to have a better representation of particulate
systems, and mainly due to the availability of increased computational
resources, attention has shifted to simulating random packings of non-
spherical particles. The first problem arising with nonspherical particles
is the more complex shape than the spherical form. Different methods
have been proposed to account for nonspherical shapes. In several

methods the analytical equation of the particles is considered in the al-
gorithm: packings of ellipsoids [22–25], spherocylinders [26], superballs
[27,28], superellipsoids [29] and general convex particles [30] have
been investigated. The use of the analytical equation to represent the
particle has the clear advantage that the exact shape of the particles is
considered. Although such a method is elegant and rigorous, the detec-
tion of overlaps is non-trivial and may lead to detection errors in some
critical situations [31]. In addition, the algorithm is tailored for the spe-
cific shape under consideration and, clearly, particles with a shape that
cannot be represented analytically cannot be simulated.

Another approach consists of tessellating the container and the par-
ticle shape with a grid, digitizing both the domain and the particles
[32–35]. In this way, any particle shape can be approximated with a co-
herent collection of pixels (2D) or voxels (3D), and the collision and
overlap detection are simply noting whether two objects occupy the
same site in the grid. On the other hand, quantitative predictions of
packing characteristics, such as packing density, are sensitive to the res-
olution used and increasing the resolution through a finer grid leads to
too much higher memory requirements than other methods [32]. Fur-
thermore, the movement of the particles is discretized, such that parti-
cle trajectories are affected by the resolution of the grid.

The third method is the so-called multi-sphere (or sphere-
assembly) approach [36–40], in which particles are represented by an
assembly of component spheres reproducing their shape. As the
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digitizing method, general particle shapes, analytical or otherwise, can
be reproduced by varying the position and the size of the component
spheres within the particle. The detection of particle overlaps is carried
out by checking if two component spheres, belonging to different parti-
cles, overlap, which is much easier if compared with the first approach
where the analytical particle equations are used. On the other hand,
higher resolutions, obtained with a larger number of component
spheres, slow down the algorithmand requiremore computermemory,
though usually less than in the case of the digitizing method.

The packing procedure is the second important feature to consider
and it can affect the resulting packing properties. Existing physical sim-
ulation models include the discrete element method (DEM) [29,40,39]
and the molecular dynamics method (MD) [23,24,28]. In these
algorithms the real interaction forces are taken into account, rigorously
simulating the dynamics of the packing generation in time domain.
While even jammed configurations can be obtained [22,41], these
methods are usually very complex and, although specific technical solu-
tions can be used to speed up the simulations, they are less computa-
tionally efficient than many purpose designed packing algorithms, at
least for spheres [42]. Furthermore, for some engineering applications
such a highly detailed physical representation is not necessary.

In Monte-Carlo methods [31], each particle is added to the domain
one by one by selecting a randomposition and orientation and checking
the overlaps with previously placed particles: if there are no overlaps,
the current particle is accepted, otherwise a new position is tried and,
after a predefined number of trials, the particle is rejected if an accept-
able placement has not been found. Though this algorithm is straight-
forward, it is very time consuming and no rearrangement of particles
is permitted (i.e., the orientation is completely random). This usually
results in loose packings, andwhen rigid particles are simulated thema-
jority if not all the particles are not in contact with one another.

Another packing algorithm, which has been widely adapted for non-
spherical random packings [36,38], is the collective rearrangementmeth-
od (CR). In this algorithm all the particles are randomly distributed and
oriented in a domain which is smaller than the volume that all the parti-
cles may occupy. At the beginning particles experience large overlaps,
which are individually removed by iteratively moving and rotating each
particle under the action of a restoring force and a restoringmoment gen-
erated in consideration of the overlaps. The rearrangement of particles is
usually coupledwith a process of particle to domain reduction, consisting
of either reducing (i.e., scaling down) the particle size or increasing
(i.e., scaling up) the domain volume. When simulating hard particles,
the algorithm stops when all the overlaps have been removed. This tech-
nique is expected to be faster than DEM andMD, since the physics is only
approximated in order to save computational time. While this method
usually provides close packings, they are generally not strictly jammed.
Moreover, there is no check about the contact information of particles
during the rearrangement process: typically, in the final configuration
particles are arranged in unstable positions or are isolated, feature
which is pronounced by the particle-to-container shrinking procedure.

Finally, in principle each packing algorithm could be coupledwith one
of the three approaches described above to represent the particle shape,
although some concerns have been recently arisen when the sphere-
assembly approach is coupled with the discrete element method [39,40].

In this study, a collective rearrangement method coupled with the
sphere-assembly approach is used, sharing some features in common
with the Nolan and Kavanagh work [36]. However, in the present algo-
rithm both the particles and the container maintain their dimensions,
avoiding the particle shrinking procedure. A constraint has been intro-
duced and applied to each particle in order to provide packings in
which all the particles are stable. The coupling of these two characteris-
tics ensures that all the particles contact each other in the final con-
figuration, characteristics that cannot be generally guaranteed by
conventional CR algorithms [21]. The unambiguous detection of contacts
is a desired feature in many engineering applications because percola-
tion thresholds and conduction properties of the packing are strictly

related to the number of contacts [43–45,7]. In addition, the algorithm
has been generalized to allow for multiple polydisperse phases and to a
controlled degree of particle overlap in order to simulate deformable
particles and sintered multi-phase packings.

The study focuses on the application to rigid andnon-rigid ellipsoids,
cylinders and agglomerates, though the algorithm is sufficiently general
that any particle shape can in principle be used. The chosen sub-set of
shapes is common in several engineering applications, such as in poly-
mer electrolyte [46] and solid oxide [47–49] fuel cells which, in part,
motivated the developments described herein. In these applications it
is important that in the reconstructedmicrostructure the packing is rep-
resentative of a stable configuration and the particles experience a de-
sired degree of overlap, in order to ensure that charges can be
transported and converted throughout the packing [48,50,47,51–53].

The paper is organized as follows: in Section 2 the algorithm is pre-
sented in detail; in Section 3, the algorithm is first explored by assessing
the effects of its internal parameters, then simulation results for rigid
spheres, ellipsoids and cylinders are compared to those obtained by
other algorithms, and finally some results regarding the broader possi-
bilities of the algorithm are shown.

2. Algorithm

2.1. General aspects

The algorithmwaswritten in C++programming languagewith the
use of some functions provided in an open source finite element deal.II
library [54]. The code was generalized to account for both 2D and 3D
packings with one or more polydisperse or monodisperse phases of
rigid or deformable particles: in this study only the three dimensional
problem is described.

The algorithm begins with the definition of the domain size and the
number, types and sizes of particles. The domain consists of a box of
specified dimensions having a rigid floor and periodic boundary condi-
tions in the horizontal directions. Based on the desired volume composi-
tion, the initial porosity and the particle size distribution of each phase,
the number of particles for each phase is calculated. A very small and un-
realistic initial porosity is used in order to fill the domainwithmore par-
ticles than there will be in the final configuration: in this way, packings
that do not completely fill the chosen domain are excluded.

All the particles are labeled with a progressive index i, from 1 to the
total number of particlesNpart. Apart from its type and size, each particle
i is characterized by its center coordinates ci (i.e., the coordinates of its
center ofmass) and two axial directions, x̂i and ẑi, which identify the ori-
entation of the particle with respect to the global system of reference
(see Fig. 1). Note that the third axis ŷ

i
is not independent and can be eas-

ily calculated as ŷ
i
¼ ẑi×x̂i.

Each particle is represented by an assembly of nc
(i) component

spheres, which means that the radius (rk(i)) and relative position of
each k(i) component sphere with respect to the local particle coordinate
system (ec ið Þ

k ) are stored. Note that ec ið Þ
k represents the center of the k(i)

component sphere in the local frame, which is centered on the particle
center ofmass and oriented along the particle axes. The center coordinate
of the component sphere in the global frame is indicatedwithc ið Þ

k . There is
a one-to-one correspondance between the center of the component
sphere in the global (i.e.,c ið Þ

k ) and in the local (i.e.,ec ið Þ
k ) coordinate systems

as reported in Eq. (1).

c ið Þ
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T

ŷ
i
T

ẑi
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Eq. (1) shows that the component sphere center in the global frame
c ið Þ
k can be calculated from the local oneec ið Þ

k by applying a rotationmatrix,
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