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Unsteady settling behavior of a soluble spherical particle falling in aNewtonianfluidmedia is investigatedusing a
drag coefficient of the form given by Ferreira et al. (Chem. Eng. Commun. 1998). It is considered that themass of
the particle reduces due to its solubility in the fluid, and consequently diameter of the particle will be reduced by
a linear function. In a current study, the equation of themotion for described variable-mass particle is introduced
for the first time and is solved by Padé approximation of Differential Transformation Method (DTM-Padé) and
numerical Runge–Kutta method. Also the influence of solubility parameter on velocity profile is discussed and
particle's positions are depicted graphically in each 1 s time step.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Description of themotion of immersed bodies influids has long been
a subject of great interest due to its wide range of applications in indus-
try e.g. sediment transport, deposition in pipelines, and alluvial chan-
nels [1,2]. The settling mechanism of solid particle, bubble or drop in
Newtonian and non-Newtonian fluids is reported by Clift et al. [3] and
Chhabra [4]. Several types of drag coefficients for spherical and non-
spherical particles were presented by Haider and Levenspiel [5], also
Guo [6] and Mohazzabi [7] studied the behavior of spheres and objects
falling into fluids. Reviewing the technical literature, it is clear that
most of the pervious investigations are performed for steady-state con-
ditions (at terminal velocity) and few of them has been studied the un-
steady motion of falling objects (accelerating motion). Also, none of
them considered the reduction of the mass and diameter of the particle
due to solubility or reaction in the fluid media, and they just considered
a solid particle with a constant mass and diameter. In this study we aim
to fill this gap with a novel analytical method.

Recently, several attempts have been made to develop analytical
tools to solve the motion's equation of the falling objects in fluids.
Ganji [8] employed Variational Iteration Method (VIM) and derived a
semi-exact solution for the instantaneous velocity of the particle over
time in incompressible fluids. Also, Yaghoobi and Torabi [9] investigated
the acceleration motion of a vertically falling non-spherical particle in
incompressible Newtonian media by VIM. Jalaal et al. [10] used
Homotopy Analysis Method (HAM) for obtaining the solution of the

one-dimensional non-linear particle equation. They demonstrated that
using appropriate initial guess and auxiliary parameter, HAM is an accu-
rate and reliable method. Furthermore, Jalaal et al. [11] applied He's
Homotopy Perturbation Method (HPM) to solve the acceleration
motion of a vertically falling spherical particle in incompressible Newto-
nian media. Torabi and Yaghoobi [12] combined HPM with Padé ap-
proximation for increasing the solution accuracy of the particle's
equation of motion. The motion of a spherical particle rolling down an
inclined plane submerged in a Newtonian environment has been stud-
ied by Jalaal et al. [13,14] through HPM.

In most applications of particles falling in liquids such as mineral
processing, hydraulic transport, slurry systems, abrasive water jets, flu-
idized bed reactors and so on [3], the mass and consequently diameter
of the particle reduce due to its solubility or reaction with fluid, while
all of the previous works are based on a rigid and insoluble sphere par-
ticle. So in this paper, unsteadymotion of a soluble particle in Newtoni-
an media is investigated by Differential Transformation Method (DTM)
[15] with Padé approximation and fourth order Runge–Kutta numerical
method.

2. Problem description

For modeling the particle sediment phenomenon, consider a small
particle with a spherical shape of variable diameter D(t) and mass of
m(t) and density of ρs, falling in infinite extent filled by an incompress-
ible Newtonian fluid. Density of fluid, ρ, and its viscosity, μ, are known.
We considered the gravity, buoyancy, drag forces and added mass (vir-
tual mass) effect on particle. According to the Basset–Boussinesq–Ossen
(BBO) equation for the unsteady motion of the particle in a fluid, for a
dense particle falling in light fluids and by assuming ρ ≪ ρs, Basset
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history force is negligible. So, by rewriting force balance for the particle,
the equation of motion is gained as follows [12],

m tð Þdu tð Þ
dt

¼ m tð Þg 1− ρ
ρs

� �
−1

8
πD tð Þ2ρCDu tð Þ2− 1

12
πD tð Þ3ρdu tð Þ

dt
; ð1Þ

where CD is the drag coefficient, in the right hand side of Eq. (1), the first
term represents the buoyancy effect, the second term corresponds to
drag resistance, and the last term is due to the added mass effect
which is due to acceleration of fluid around the particle. The main diffi-
culty of solving Eq. (1) is non-linear terms due to the non-linearity na-
ture of the drag force which comes from drag coefficient CD, u(t)2 and
D(t)2 terms. Ferreira et al. [16], in their analytical study, suggested a cor-
relation for CD of spherical particles which has good agreementwith the
experimental data in a wide range of Reynolds number, 0 ≤ Re ≤105.
This appropriate equation is

CD ¼ 24
Re

1þ 1
48

Re
� �

: ð2Þ

It's necessary to inform that Eq. (2) is based on the non-slip condi-
tion on the surface of the soluble particle. Jalaal et al. [11] have shown
that Eq. (2) represents amore accurate resistance of the particle in com-
parison with the pervious equations presented by others. Substituting
Eq. (2) into Eq. (1) and variable-mass of the spherical particle

m tð Þ ¼ 1
6
πD tð Þ3ρs ð3Þ

Eq. (1) can be rewritten as

1
12

πD tð Þ3 2ρs þ ρð Þdu tð Þ
dt

þ 3πD tð Þμu tð Þ

þ 1
16

πD tð Þ2ρu tð Þ2−1
6
πD tð Þ3g ρs−ρð Þ

¼ 0: ð4Þ

It is completely evident that in different industrial processes and ap-
plications, diameter of theparticle varies by a known functionwhichde-
pends onto its solubility. In this study, it is considered that diameter

varies through a linear function, so for other functions it can be solved
easily too by the same method.

D tð Þ ¼ D0−Ḋ� t; ð5Þ

where D0 is the initial diameter and Ḋ is the reduction rate of the diam-
eter due to particle solubility. By substituting to Eq. (4),

1
12

π D0−Ḋ� t
� �3 2ρs þ ρð Þ du tð Þ

dt
þ 3π D0−Ḋ� t

� �
μu tð Þ

þ 1
16

π D0−Ḋ� t
� �2ρu tð Þ2−1

6
π D0−Ḋ� t
� �3g ρs−ρð Þ ¼ 0:

ð6Þ

Eq. (6) is a non-linear equation with an initial condition (u(0) = 0)
which can be solved by numerical and analytical methods. In the pres-
ent study, DTM-Padé and Runge–Kutta methods are presented for solv-
ing the problem. A schematic of described problem is shown in Fig. 1.

3. Differential Transformation Method with Padé approximate
(DTM-Padé)

For understanding the method's concept, suppose that x(t) is an an-
alytic function in domain D, and t = ti represents any point in the do-
main. The function x(t) is then represented by one power series
whose center is located at ti. The Taylor series expansion function of
x(t) is in the form of:

x tð Þ ¼
X∞
k¼0

t−tið Þk
k!

dkx tð Þ
dtk

" #
t¼ti

∀t∈D: ð7Þ

The Maclaurin series of x(t) can be obtained by taking ti = 0 in
Eq. (7) expressed as:

x tð Þ ¼
X∞
k¼0

tk

k!
dkx tð Þ
dtk

" #
t¼0

∀t∈D: ð8Þ

As explained in [15] the differential transformation of the function
x(t) is defined as follows:

X kð Þ ¼
X∞
k¼0

Hk

k!
dkx tð Þ
dtk

" #
t¼0

; ð9Þ

where X(k) represents the transformed function and x(t) is the original
function. The differential spectrum of X(k) is confined within the inter-
val t ϵ [0,H], where H is a constant value. The differential inverse trans-
form of X(k) is defined as follows:

x tð Þ ¼
X∞
k¼0

t
H

� �k

X kð Þ: ð10Þ

From Eq. (10), it can be carried out easily that the theory of differen-
tial transformation is based upon the Taylor series expansion. The
values of function X(k) at values of argument k are referred to as dis-
crete, i.e. X(0) is known as the zero discrete, X(1) as the first discrete,
etc. Themore discrete available, themore precise it is possible to restore
the unknown function. The function x(t) consists of the T-function X(k),
and its value is given by the sum of the T-function with (t/H)k as its co-
efficient. In real applications, at the right choice of constant H, the larger
values of argument k the discrete of spectrum reduce rapidly. The func-
tion x(t) is expressed by a finite series and Eq. (10) can be written as:

x tð Þ ¼
Xn
k¼0

t
H

� �k

X kð Þ: ð11Þ

Some important mathematical operations performed by the Differ-
ential Transform Method are listed in Table 1. Many advantages of

Nomenclature

CD Drag coefficient
D0 Initial particle diameter
Ḋ Rate of diameter reduction
D(t) Particle diameter function
DTM Differential Transformation Method
f(η) Analytic function
g Acceleration due to gravity [m/s2]
H Constant value
m(t) Particle mass function
Num Numerical method
P Padé approximation
t Time [s]
u Velocity [m/s]
x(t) Analytic function
X(k) DTM transformed function
[L,M] Order of accuracy in Padé

Greek symbols
μ Dynamic viscosity [kg/ms]
ρ Fluid density [kg/m3]
ρs Spherical particle density [kg/m3]
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