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For gas flows, a Lagrangian Concentration Differential Equation (LCDE) was solved along a particle path using
Eulerianderivatives for theparticle velocity divergencefield. This equation is solved by aGlobally Eulerian Locally
Lagrangian (GELL) discretization technique which avoids the computationally intensive Jacobian calculations of
the Full Lagrangianmethod, the steady-state assumption of the area method, and the computational inefficiency
of the box-counting methods. The LCDE–GELL method was compared to such methods using a high-order
temporal integration technique and evaluated for two fundamental flowfields: flow past a corner and past a
cylinder. In the dilute limit, the particle concentration fields were predicted for various particle inertias (character-
ized by a range of Stokes numbers) including the zero-mass (tracer) limit for which an exact particle concentration
solution exists. Both the weighted-average and ensemble-average methods required far more parcels to
achieve the same accuracy demonstrated by the LCDE–GELL method. It is recommended that future work
investigates the LCDE approach for three-dimensional, complex flows with particle–particle interaction
to investigate its robustness.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A natural approach when simulating particle interactions with a gas
is to use Lagrangian particle trajectories. These particle path-lines are
defined based on the center of mass of the particle (or the center of
mass for a cloud of particles) in which Ordinary Differential Equations
are used to update particle position, velocity, mass, temperature, etc.
The Lagrangian approach provides high accuracy with respect to a par-
ticle path, including particle–wall and particle–particle reflections. As a
result, most numerical methods used to predict describe particle mass
flux and concentration for aerodynamic and turbulent flows employ
Lagrangian methods for the particle field [1–5]. The conventional
Lagrangian approach has been successfully employed in modeling
many engineering processes [6,7]. However, use of these Lagrangian
trajectories to determine local particle concentration or other Eulerian
cell quantities generally requires statistical sampling based on the sum-
mation of several instantaneous particle locations. This “bin-averaging”
uses weighted and un-weighted summation based on a computational
cell or the vicinity of a computational node, and employs an area aver-
age for 2D flows (Fig. 1) or a volume average for 3D flows. The averaging
can lead to uncertainty and/or inaccuracy unless a very large number of
trajectories are employed [8–10]. The numerical errors of particle con-
centration predictions obtained from Lagrangian trajectories can also

lead to significant errors of the gas flow when two-way coupling is im-
portant [11].

This averaging problem can be avoided with Eulerian dispersed-
phase representations. Such a technique is described by reference [12]
for dilute gasflows. This approach employs partial differential equations
(PDEs) for the particle characteristics (e.g. velocity and concentration)
at discrete cell nodes or cell volumes on an Eulerian grid. These fields
are integrated in time based on discrete spatial and temporal gradients
and assumptions of continuity. While an Eulerian particle field
representation can consistently describe two-way coupling between
the particle concentration and the gas flow properties, it cannot
accurately incorporate particle reflection off surfaces, history force
effects (which require a Lagrangian acceleration), or stochastic turbu-
lent diffusion [12,13]. Furthermore, Eulerian methods have difficulty
with regions with trajectory crossing and concentration discontinuities
due to numerical diffusion as in reference [14] and become compu-
tationally expensive if a broad particle size distribution is to be
incorporated.

As such, it is desirable to develop a method that can incorporate the
trajectory accuracy and robustness of the Lagrangian approach and
the concentration accuracy of the Eulerian approach. There are two
Lagrangian methods which have made significant headway toward
this goal. The method of reference [15] employs a discrete Lagrangian
approach which avoids bin-averaging but gives numerical difficulties
when the particle divergence is infinity (due to trajectory crossing).
The Full Lagrangian method of reference [16] was further developed
by reference [8] and [17] to avoid the numerical difficulties of infinite
divergence, whereby a Jacobian tensor is used to provide the particle
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velocity divergence. This method dramatically reduces the number of
particles needed by orders of magnitude compared to a conventional
Lagrangian binmethod,while avoiding the numerical diffusion of a con-
ventional Eulerianmethod. However, this approach assumes linear drag
and can be computationally expensive, as it requires a set of eight ODEs
for a 2D flow and eighteen for a 3D flow.

The approach developed in this study seeks to use key elements
of the Full Lagrangian approach while preserving the simplicity of
conventional Lagrangian approaches, e.g. allowing for generalized
surface forces and trajectory ODE's which do not require lineariza-
tion. This is accomplished by using Eulerian spatial derivatives to esti-
mate the particle velocity divergence coupled with discretization of the
Lagrangian Concentration Differential Equation. The technique is also
compared to conventional Lagrangian bin techniques for two fundamen-
tal flows in terms of particle concentration, in the dilute limit. To the
authors' knowledge, this is the first such hybrid Lagrangian–Eulerian
method for particle concentration and the first to provide detailed
quantitative comparisons of weighted and un-weighted bin methods
with the area–ratio method in terms of prediction fidelity of particle
concentration.

2. Theoretical and numerical background

2.1. Lagrangian particle trajectory ODEs

The overall particle translational equation ofmotion equates the rate
of change of the particle's linearmomentum to the net sumof the forces
acting on the particle of a given mass. This mass (mp) can be expressed
in terms of the particle volume (∀p) and density (ρp), or in terms of the
particle diameter (d):

mp ¼ ∀pρp ¼ πd3ρp
6

ð1Þ

If one assumes negligible contact interactions (i.e. particles are small
enough such that particle–particle collisions are not significant), the
Lagrangian equation for particle velocity (v) is given by

mp dv=dtð Þ ¼ mpgþ Fsurf ð2Þ

The left-hand side (LHS) includes the temporal derivative of the par-
ticle velocity along the particle path while the right-hand side (RHS) in-
cludes the body force based on gravity (g) and fluid dynamic surface

forces (Fsurf). Similarly, a Lagrangian ordinary differential equation
(ODE) can be written for particle position (xp) as

dxp=dt ¼ v ð3Þ

The dominant contribution of the surface force is typically the drag
component that is non-zero in the presence of finite viscosity of the
surroundingfluid (μf). For a spherical solid particle surrounded by a uni-
form continuum flow of constant density, this force can be represented
by the Stokes drag as:

FD ¼ −3πdf μ fw ð4Þ

This uses the particle relative velocity (w) based on the “unhindered”
continuous-fluid velocity (u@p), extrapolated to the particle centroid (xp)

w tð Þ≡ v tð Þ−u@p tð Þ ð5Þ

The “unhindered” velocity neglects local flow disturbances caused
by the particle itself, i.e. it is the velocity of the fluid that would occur
at the centroid if the particle was not present. Temporal response to
the drag force can be used to define a particle response time as

τp ≡
mp wj j
FD

ð6Þ

The Stokes number (St) that relates particle response time to the
continuous-phase flow time-scale (τf) is defined as

St ≡
τp
τ f

ð7Þ

As with Eq. (6), the right-hand side expression assumes linear drag.
In addition, a high density ratio between the particles and the surround-
ing gas coupled with negligible particle spin and weak flow vorticity
renders the other surface force components to be generally negligible
compared to the drag [18] so that the other surface force can be approx-
imated simply as

Fsurf≈FD ð8Þ

Note that while these assumptions are helpful to focus on this study's
fundamental characterization and comparison of several methods, the
present method can be extended to non-linear drag expressions and
additional force terms [19].

2.2. Lagrangian numerical methods for particle trajectories

The momentum and position ODE's (Eqs. (2) and (3)) may be inte-
grated in time for a discrete time increment (Δt) assuming constant τp
and u@p using a generalized high-order method proposed by reference
[20], which accounts for time variations in the fluid velocity seen by
the particle (along its path):

vnþ1
p ¼ vnpe

−Δt=τnp þ u n
@p 1−e−Δt=τnp
� �

þ A Δt−τnp 1−e−Δt=τnp
� �n o

þB Δt2−2τnpΔt þ 2 τnp
� �2

1−e−Δt=τnp
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� �
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Fig. 1. Schematic of a two-dimensional Eulerian continuous-phase grid with particles
(black dots) in a discrete computational volume (∀ Δ), i.e. a control volume, associated
with a node xi.
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