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This study proposes a simulationmethod for incompressible gas flow laden with small solid particles. It is based
on a Vortex in Cell (VIC)method, whichwas originally developed to simulate incompressible single-phase flows.
The proposed VIC method discretizes the gas vorticity field into vortex elements and computes the time evolu-
tion of the two-phase flow by calculating the behavior of the vortex element as well as the particle motion with
the Lagrangian approach. This study also applies the VIC method to simulate a free fall of small solid particles in
an unbounded air. The particles, initially arranged within a spherical region in a quiescent air, are made to fall,
and their fall induces the air flow around them. The interactions between the particle motion and the air flow
are favorably comparedwith the existingmeasured and simulated results, demonstrating the validity of the pro-
posed VIC method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Gas flows containing small solid particles are found in many indus-
trial applications, such as energy conversion systems and chemical reac-
tors. They are also closely relatedwith atmospheric phenomena, such as
snowstorm and microburst. Various simulation methods have thus far
been proposed for such particle-laden gas flow [1]. Most of themethods
are of a Lagrangian–Eulerian type: Lagrangian approach is applied to
simulate each particle motion, while Eulerian methods such as a finite
difference method are used for the simulation of gas flow.

Vortex in Cell (VIC) method with redistribution of vortex element is
one of the vortex methods to simulate incompressible flows [2]. It
discretizes the vorticity field with vortex elements and computes the
time evolution of the flow by tracing the convection of each vortex ele-
ment through the Lagrangian approach. The Lagrangian calculation
markedly reduces the numerical diffusion as well as ensures the higher
numerical stability. Therefore, the VICmethod is expected to be usefully
employed for the direct numerical simulation (DNS) of turbulent flows
and various results have been reported [3–5]. Cottet and Poncet [3] ap-
plied the VICmethod for the wake simulation of a circular cylinder, and
captured the streamwise vortices occurring behind the cylinder. Cocle et
al. [4] analyzed the behavior of two vortex system near a solid wall, and
made clear the interaction between two counter-rotating vortices and
the eddies induced in the vicinity of thewall. Chatelain et al. [5] simulat-
ed trailing edge vortices, and visualized the unsteady phenomena
caused by disturbances. These studies are concerned with the time-
developing free shear flows. But the VIC method has not been applied
to the turbulent flows bounded by solid walls, which are closely related
with the turbulent friction and the heat transfer. Thus, the authors [6]

performed the DNS for a turbulent channel flow, which is a representa-
tive example for thewall turbulent flows.When applying the classic VIC
method, the oscillation of the flow increased with the progress of the
computation, and eventually the computation collapsed. This was
caused by the fact that the consistency among the discretized equations
is not ensured. This was also because the solenoidal condition for the
vorticity is not fully satisfied. To overcome such problems of the existing
VIC method, the authors [6] proposed two improvements for VICmeth-
od to heighten the numerical accuracy and efficiency: A discretization
method employing a staggered gridwas presented to ensure the consis-
tency among the discretized equations as well as to prevent the numer-
ical oscillation of the solution, and a correctionmethod for vorticity was
also proposed to compute the vorticity field satisfying the solenoidal
condition. The improved VIC simulation for the turbulent channel flow
highlighted that the time evolution of the flow is fully performed and
that the statistically steady turbulent flow is favorably obtained. It also
demonstrated that the organized flow structures, such as the streaks
and the streamwise vortices appearing in the near wall region, are suc-
cessfully captured and that the turbulence statistics, such as the mean
velocity and the Reynolds stress, agree well with the existing DNS re-
sults. The author [7] applied the method to simulate the motion of
small air bubbles inwater and the behavior of a vortex ring launched to-
ward the bubbles. The simulation highlighted that the bubbles are
entrained into the vortex ring and that the entrained bubbles are
transported by the convection of the vortex ring.

The objective of this study is to propose a simulation method,
which is based on the improved VIC method, for incompressible gas
flow laden with small solid particles. It computes the time evolution
of the flow by calculating the behavior of the vortex element as well
as the particle motion with the Lagrangian approach. ThoughWalther
and Koumoutsakos [8] proposed a VIC method for particle-laden gas
flow, the present method based on the improved VIC method is
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expected to have higher numerical accuracy. It should also be noted
that the present method is considered to be usefully applied to the
DNS for particle-laden turbulent flow. Because the applicability and
validity of the method were demonstrated through the DNS for a
single-phase turbulent channel flow [6]. This study also applies the
proposed method to simulate a free fall of small spherical solid parti-
cles in air so as to demonstrate the validity of the method.

2. Basic equations and numerical method

2.1. Governing equations for gas and particle

When the gas-phase is incompressible, the mass and momentum
conservation equations are expressed as:

∇⋅ug ¼ 0 ð1Þ

∂ug

∂t þ ug⋅∇
� �

ug ¼ − 1
ρg

∇pþ ν∇2ug−
1
ρg

FD ð2Þ

where FD is the force exerted by the particle acting on the gas-phase
per unit volume.

Taking the curl of Eq. (2) and substituting Eq. (1) into the resultant
equation, the vorticity equation for the gas is derived:

∂ω
∂t þ∇⋅ ωug

� �
¼ ∇⋅ ugω

� �
þ ν∇2ω− 1

ρg
∇� FD ð3Þ

where ω is the vorticity.
It is postulated that the dominant forces on the particles are the drag

and gravitational forces. It is also assumed that the virtual mass force,
the Basset force, and the pressure gradient force are negligible. The
equation of motion for a particle is written as:

dup

dt
¼ f

τp
ug−up

� �
þ 1−

ρg

ρp

 !
g ð4Þ

where τp is the particle response time, ρpd2/(18ρgν). f is the drag factor
defined by the following equation using the drag coefficient CD and the
particle Reynolds number Rep (=d|ug−up|/ν):

f ¼ CDRep=24: ð5Þ

According to Schiller and Naumann [9], f at Rep≤800 is given as:

f ¼ 1þ 0:15Re0:687: ð6Þ

Considering Eq. (4), the drag force acting on a particle, Fp, is given
as:

Fp ¼ π
6
d3ρp

f
τp

ug−up

� �
: ð7Þ

The number of particles per unit volume, np, is written by the fol-
lowing equation:

np ¼ αp=
π
6
d3 ð8Þ

where αp is the particle volume fraction.
Since the force FD in Eqs. (2) and (3) is expressed as npFp, the fol-

lowing relation is derived from Eqs. (7) and (8).

FD ¼ αpρp
f
τp

ug−up

� �
ð9Þ

2.2. Orthogonal decomposition of velocity and discretization of vorticity

According to the Helmholtz theorem, the gas velocity ug is repre-
sented as the summation of the gradient of a scalar potential ϕ and
the curl of a vector potential ψ: the gas velocity ug is expressed as:

ug ¼ ∇ϕþ∇� ψ: ð10Þ

The velocity calculated from Eq. (10) remains unaltered even when
any gradient of scalar potential function is added to ψ. To remove this
arbitrariness, a solenoidal condition is imposed on ψ:

∇⋅ψ ¼ 0 ð11Þ

Taking the curl of Eq. (10) and substituting Eq. (11) into the resul-
tant equation, the vector Poisson equation for ψ is derived:

∇2ψ ¼ −ω: ð12Þ

When substituting Eq. (10) into Eq. (1) and rewriting the resultant
equation by using the relation ∇⋅(∇×ψ)=0, the Laplace equation for
ϕ is obtained:

∇2ϕ ¼ 0: ð13Þ

When ψ and ϕ are calculated by solving Eqs. (12) and (13) respec-
tively, the velocity ug is computed from Eq. (10). The vorticity ω in
Eq. (12) is estimated from Eq. (3). The Vortex in Cell (VIC) method
discretizes the vorticity field with vortex elements to calculate the dis-
tribution of ω by tracing the convection of each vortex element.

It is postulated that the position vector and vorticity for the vortex
element v are xv=(xv, yv, zv) and ωv respectively. The Lagrangian form
of the vorticity equation, Eq. (3), is written as:

dxv
dt

¼ u xvð Þ ð14Þ

dωv

dt
¼ ∇⋅ u xvð Þω xvð Þð Þ þ ν∇2ω xvð Þ− 1

ρg
∇� FD: ð15Þ

When the position and vorticity of vortex element are known at t=
t, the values at t=t+Δt are computed from Eqs. (14) and (15). In the
VICmethod, the flow field is divided into computational grid cells to de-
fine ψ, ϕ and ω on the grids. If ω is defined at a position xk=(xk, yk, zk),
the vorticityω is given to xk, or a vortex element withω is redistributed
onto xk

ω xkð Þ ¼
XNv

v
ωvW

xk−xv
Δx

� �
W

yk−yv
Δy

� �
W

zk−zv
Δz

� �
ð16Þ

where Nv is the number of vortex elements, and Δx, Δy and Δz are the
grid widths. For the redistribution function W, the following equation
is employed [10]:

W εð Þ ¼
1−2:5ε2 þ 1:5 εj j3 εj jb1
0:5 2− εj jð Þ2 1− εj jð Þ 1≤ εj j≤2
0 εj j > 2

:

8<
: ð17Þ

2.3. Discretization by using staggered grid

For incompressible flow simulations, theMACmethod and the SMAC
method solve the Poisson equation for pressure, which is derived from
the equation for pressure gradient and the continuity equation. They em-
ploy a staggered grid to ensure the consistency between the discretized
equations as well as to prevent the numerical oscillation of the solution.
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