Contents lists available at SciVerse ScienceDirect

Powder Technology

journal homepage: www.elsevier.com/locate/powtec

Short communication

High purity lithium iron phosphate/carbon composites prepared by using secondary lithium source

Jinhan Yao ^{a,*}, Xiaohui Wang ^a, Pinjie Zhang ^a, Jianbo Wang ^a, Jian Xie ^a, Kondo-Francois Aguey-Zinsou ^b, Chun'An Ma ^a, Lianbang Wang ^{a,*}

^a State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou, Zhejiang, PR China

^b School of Chemical Engineering, The University of New South Wales, Sydney, Australia

ARTICLE INFO

Article history: Received 5 September 2012 Received in revised form 26 December 2012 Accepted 20 January 2013 Available online 26 January 2013

Keywords: Lithium iron phosphate Secondary lithium sources Lithium phosphate

ABSTRACT

Various lithium salts including lithium carbonate, lithium hydroxide, lithium acetate and lithium citrate were used as secondary lithium sources for the synthesis of lithium iron phosphate/carbon composites with cheap iron sources in the form of Fe and FePO₄. Samples were characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry and constant-current charge–discharge tests. The results showed that lithium carbonate derived product generated a high purity LiFePO₄ phase with high tap densities. Furthermore, satisfactory electrochemical performance with an initial discharge capacity of 146.1 mAh g⁻¹ at 0.5 C rate and good capacity retention of 95.2% after 50 cycles were achieved.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Finding a low-cost synthetic route to yield high performance lithium iron phosphate products remains a challenge. In this regard, the selection of a cheap source of iron and lithium is a paramount. Cheap source of iron could take the form of iron phosphate [1,2], instead of divalent ferrous source such as iron(II) chloride [3], iron (II) oxalate [4,5], iron(II) acetate [6] or iron(II) sulfate [7,8]. Low cost source of lithium could take the form of lithium phosphate. However, using Li₃PO4 as raw materials starting material, would require an optimum control of the amount of usage, as it may lead to low Li content in the final product (LixFePO₄ pahse with x < 1) [9]or an over dosage if an excess of Li₃PO4 is used. Another problem associated with the use of an excess of Li₃PO4 is the inevitable formation of intermediate compounds that would impede electrode performance. In particular, during the synthesis of LiFePO₄, the formation of Li₄P₂O₇ as a by-product has been a significant problem limiting electronic conduction and induces side reactions leading to the formation of impurities when LiFePO₄ is exposed to air [10]. Several approaches have been proposed to suppress the formation of Li₃PO₄. These include: a) controlling the sintering temperature [10] and atmosphere [2,11] during the post heat-treatment process of LiFePO4, b) introducing reductive reagent [11,12] and c) synthesizing LiFePO₄ material in a nonstoichiometric way [13].

In the present case, our strategy was to use a low starting amount of Li_3PO_4 to avoid any formation of by-product and a secondary lithium source to compensate the Li loss inevitability occurring during the sintering/synthesis process of LiFePO₄ [14–18].To this aim, we used a mechano-chemical-solid-state synthesis method with lithium phosphate as the main Li source and various Li salts as secondary Li sources. Fe and FePO₄ were used as an iron source since widely available. We found that compared to the single lithium phosphate source, using appropriate amounts of a secondary Li source could eliminated the formation of impurities. In particular, the use of lithium carbonate as secondary Li source leads to very good electrochemical properties for the resulting LiFePO₄. The role of secondary Li salt addition on the physical and electrochemical properties of the resultant LiFePO₄/C composites is discussed.

2. Experimental

2.1. Synthesis of LiFePO₄/C

The LiFePO₄/C composites were prepared by a ball-milling assisted solid-state reaction method using sucrose as a carbon source. The raw materials in their stoichiometric ratios (Table 1) were mixed with 10 ml ethanol and then ball-milled at a speed of 150 rpm for 3 h, and then 350 rpm for 8 h. The precursor obtained was put into a vacuum drying oven to remove the ethanol, and then placed in a tube furnace under a nitrogen atmosphere at 450 °C for 3 h and then at 700 °C for 8 h. The products were cooled naturally to room temperature and labeled from a-e respectively.

^{*} Corresponding authors. Tel.: +86 571 88320611; fax: +86 571 88320832. *E-mail addresses:* jhyao@zjut.edu.cn (J. Yao), wanglb99@zjut.edu.cn (L. Wang).

^{0032-5910/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.powtec.2013.01.041

Table 1	
Tap densities of LiFePO ₄ /C composites prepared from	different lithium sources.

Sample	Secondary Li source	Molar ratio of raw materials				Tap densities	Carbon coating (%)	Phases
		Lithium phosphate	Secondary Li source	Fe	FePO ₄	(g/cm ³)		
a	Li ₂ CO ₃	1	0.075	1	2	1.36	3.8	LiFePO ₄
b	LiOH	1	0.15	1	2	1.33	3.6	LiFePO ₄
с	CH ₃ COOLi	1	0.15	1	2	1.35	3.7	LiFePO ₄
d	C ₆ H ₅ Li ₃ O ₇	1	0.05	1	2	1.32	3.7	LiFePO ₄
e	Li ₃ PO ₄	1	0.05	1	2	1.28	3.5	LiFePO4 Li3PO4 Li4P2O7 Fe2P2O7

2.2. Characterization

The crystallographic structure of the samples was characterized by power X-ray diffraction (XRD, PNAlytical, X'Pert Pro) with Cu·K α radiation. Data were collected in the 2 θ range of 10°–80° at a step interval of 0.02°. The morphologies of samples were observed by Scanning Electronic Microscopy (SEM, Hitachi S-4700). The particle size was analyzed with a laser particle size analyzer (Mastersizer 2000). The carbon content of the LiFePO₄/C materials was determined with a Flash EA 1112 tester (Conflo-III, Thermo Electron Corporation, America). The tap density was obtained by the following method: *ca.* 3 g of the respective LiFePO₄/C powders was poured into a small pre-weighed calibrated measuring cylinder. The later was tapped by hand until the volume of the powder ceased to decrease. The volume, V, was read and the tap density, ρ , thus calculated from $\rho = m/V$ (where m is the mass of the powder).

2.3. Electrochemical test

The electrochemical performance of the samples as cathode was evaluated by assembling a CR2032-type coin-type cell in an argon filled glove box. The electrode was prepared by dispersing 80 wt.% active materials, 12 wt.% acetylene black and 8 wt.% polyvinylidene fluoride (PVDF) in 1-methyl-2-pyrrolidone (NMP) to ensure the homogeneity, the slurry was then coated on an aluminum foil current collector and dried at 120 °C for 12 h. A lithium foil was used as the counter electrode, the electrolyte was formed by 1 M LiPF₆ in EC: DMC: EMC (1:1:1, v/v/v). Cyclic voltammetry (CV) was calculated by a CHI 660B electrochemical station at a scan rate of 0.5 mV/s between 2.5 and 4.2 V by applying a battery test system (Land CT2001A) at 25 °C.

Fig. 1. XRD patterns of LiFePO₄/C composites prepared from different secondary lithium sources: (a) Li_2CO_3 (b) LiOH (c) CH₃COOLi (d) C₆H₅Li₃O₇ and (e) Li₃PO₄.

3. Results and discussion

Using Fe and FePO₄ as raw materials, pure LiFePO₄ can be theoretically obtained according to reaction (1) whereby the iron powder reduces the trivalent Fe (III) in FePO₄ into bivalent Fe (II) in the product.

$$\text{Li}_3\text{PO}_4 \cdot 0.5\text{H}_2\text{O} + \text{Fe} + 2\text{FePO}_4 \cdot 4\text{H}_2\text{O} \rightarrow 3\text{LiFePO}_4 + 8.5\text{H}_2\text{O}$$
 (1)

However, overdosing the amount of Li_3PO_4 generates impurities, e.g. $Li_4P_2O_7$ and $Fe_2P_2O_7$, in addition to the ordered olivine phase LiFePO₄, as observed by XRD (Fig. 1). It can be assumed that the formation of impurities when using Li_3PO_4 as the main Li source was due to the following reactions: a) During the sintering process, the reaction between FePO₄ and Li_3PO_4 according to Eq. (2) and [19], and b) further reaction of $Li_4P_2O_7$ with Fe and FePO₄ according to Eq. (3).

$$2FePO_4 + 4Li_3PO_4 \rightarrow 3Li_4P_2O_7 + Fe_2O_3$$
⁽²⁾

$$1.5Li_4P_2O_7 + Fe + 2FePO_4 \cdot 4H_2O \rightarrow 1.5Fe_2P_2O_7 + 2Li_3PO_4 + 8H_2O$$
(3)

However, if an adequate amount of a secondary Li source is present, the formation of $Li_4P_2O_7$ impurities can be eliminated with the additional Li source. Indeed, we obtained a pure LiFePO₄ phase when secondary Li source was added to the reaction mixture (Fig. 1).

Further information on the structural parameters for the LiFePO₄/C composite were obtained by refining the XRD patterns using reflex model of Materials studio. Fig. 2 presents an example of a Rietveld refinement result for the LiFePO₄/C composites prepared by using lithium carbonate (Li₂CO₃) as the secondary lithium source. The lattice parameters of Li₂CO₃ derived-sample were found to be of a = 0.60075 nm,

Fig. 2. The Rietveld refinement of the XRD pattern for LiFePO $_4$ /C composites using Li $_2$ CO $_3$ as the secondary lithium source.

Download English Version:

https://daneshyari.com/en/article/236830

Download Persian Version:

https://daneshyari.com/article/236830

Daneshyari.com