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A new and simple method is established to examine the radial porosity profile of mono-sized spheres in
packed bed cylinders based on the sphere center coordinates. The method is derived from geometrical and
analytical techniques and uses arc lengths to calculate the radial porosity profile at any given axial position,
a given interval axial position, or the total axial position, thus evaluating the local, interval, or axially aver-
aged radial porosity profile, respectively. The new method and analytical functions are simple and straight-
forward and provide an accurate representation of the radial porosity profile given the sphere center
coordinates. The simple method is used to calculate the radial porosity profile for the fixed packing of iden-
tical spheres in cylindrical containers with D/d≥1.0. The evaluated results for the radial porosity profile are
benchmarked with existing analytical equations and available experimental and numerical data, respectively,
for mono-sized spheres in cylindrical containers. A concise FORTRAN program for the new arc length-based
technique is presented for this simple method for calculating radial porosity profiles.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fixed packed bed structural properties of spherical and non-
spherical particles have been widely examined for cylindrical con-
tainers. Both experimental and theoretical studies in support of trans-
port modeling require a detailed description of the void space in the
fixed packed bed structure. “The structures generated by tightly packed
mono-sized spheres have been studied by scientists as model systems
for understanding the emergence of order and crystallization or vice
versa the appearance of disordered and amorphous phases in natural
systems” [1]. Packed beds of spheres are particularly interesting struc-
tures for research in many contemporary scientific fields such as chem-
ical, mechanical, and nuclear engineering, geology and geophysics,
chemistry and physics. Even though the physical structure of an actual
packed bed used for industrial and engineering applications may not
contain spherical particles or may contain spheres with a given size
and shape distribution the investigation and analysis for several centu-
ries [1] and the large number of publications per year on the subject of
packed beds of mono-sized smooth spheres for different cylinder-to-
sphere diameter (D/d) ratios are measures of their utility as structural
models for these and other types of packed bed systems.

Presently, to model and research fixed packed beds of spheres,
numerically generated beds are obtained either by a packing algo-
rithm [2–11] or by a dynamic simulation model [12–14]. Generally,
the packing algorithm disregards the physical forces involved in the
packing process and generates the packing structure by placing a

sphere at a position based on a specific rule. Conversely, the dynamic
simulation model is based on forces, such as gravity, friction, and con-
tact, and uses Newton's second law to simulate the packing process.
In either case, the result of the numerically generated bed is a detailed
packing structure which provides the location (x, y, z center coordi-
nates) of each sphere in the bed.

In general, one of the main structural parameters considered for
fixed packed beds is the radial porosity variation, which is a characteris-
tic quantity that is influenced by the physical connection of the particles
with the container walls. The radial porosity profile consists of damped
oscillations startingwith large porosity values at thewall, which canbe a
significant component in the design and study of industrial fixed packed
systems which include, for instance, chemical and nuclear pebble bed
reactors, thermal solar heat exchangers, and environmental air scrub-
bers. In particular, mono-sized spheres in cylindrical containers are
commonly used and the radial porosity variations have been investi-
gated using a wide range of experimental methods by Roblee et al.
[15], Benenati and Brosilow [16], Thadani and Peebles [17], Ridgway
and Tarbuck [18], Martin [19], Cohen and Metzner [20], Goodling et al.
[21], Kufner and Hofmann [22], Mueller [23], Govindarao et al. [24],
Sederman et al. [25],Wang et al. [26], andMariani et al. [27]. The accura-
cy of predictive fixed packing structural expressions for spheres in cylin-
drical containers can be assessed from these experimental packing data.

Efforts to predict the radial porosity profiles vary from entirely em-
pirical in nature: Martin [19], Cohen and Metzner [20], Kufner and
Hofmann [22], Mueller [23], de Klerk [28], and Bey and Eigenberger
[29] to semi-analytical predictive expressions: Govindarao and Froment
[30], Mariani et al. [31–33], and Mueller [34].

Traditionally, investigators have defined the local porosity or void
fraction as the ratio of the void volume to the volume of the packing
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structure at a localized positionwithin the packed bed. Once the particle
positions are known, which can be obtained from a wide variety of
methods, the local porosity can be calculated. Consequently, investiga-
tors initially developed porosity equations established on a volume-
based approach. These volume-based equations characteristically are
of an elliptic integral form. In the volume-based procedure, a cylindrical
packed bed is divided into numerous concentric radial cylindrical vol-
umes and the radial porosity in each volume is determined as a fraction
of the void volume to the total radial cylindrical volume. Lamarche and
Leroy [35] and Mueller [23] present the local radial porosity volume
equation formulas for a cylindrical system with mono-sized spherical
particles. Even though these void volume-based calculations are mathe-
matically straightforward, this volume-based technique has a drawback
in that elliptic integral equationsmust be numerically solved and the ef-
fort to solve these elliptic integral equations could be significant for ex-
tremely large fixed packed systems. In addition and more importantly,
the volume-based technique provides an average value of the porosity
at a radial position in the volume region that is defined. The smaller
the radial cylindrical volume region the more accurate the volume-
based technique becomes. Area-based porosity equations have also
been presented in the form of analytical equations. In the area-based
procedure, a cylindrical packed bed is divided into numerous concentric
radial cylindrical surfaces and the radial porosity at each surface is deter-
mined as a fraction of the intersected void area to the total cylindrical
surface area. Blum and Wilhelm [36] have proven that the mean area
and volume void fractions are identically equal for packings of arbitrary
cross-section for homogeneous packings. Mariani et al. [32] present
area-based expressions for six geometrical quantities relating the inter-
section of a sphere and a cylindrical surface in terms of elliptic integrals.
Mueller [34] has also recently presented the local radial porosity area-
based analytical equation formulas for a cylindrical system with mono-
sized spherical particles. These area-based equations for the local radial
porosity greatly simplify the technique for determining the radial poros-
ity while calculating the exact same results as the volume-based equa-
tions. It should be noted that the published volume-based and area-
based methods determine the axially averaged radial porosity.

Even thoughmeaningful advancements have beenmade in simpli-
fying the procedure for calculating the radial porosity for mono-sized
spherical particles in cylindrical containers for both volume-based and
area-based methods, further improvements can certainly be accom-
plished by analyzing the particular geometry from a unique perspec-
tive. The additional simplification of the radial porosity calculation
procedurewill greatly enhance the computer simulation environment
for investigators working in this research domain.

It is for this reason the objective of this study is to present a new and
simple method for calculating the radial porosity profile for mono-sized
spheres in cylindrical containers. The new method is derived from geo-
metrical and analytical techniques and uses arc lengths to calculate the
radial porosity profile. To the author's knowledge, this is the first time
a length-based technique has been used to calculate the radial porosity.
Given the sphere center coordinates, the presented analytical equations
are easy to use and provide accurate results for the radial porosity pro-
file. The simple arc length-based technique is used to calculate the radial
porosity profile for the fixed packing of identical spheres in cylindrical
containers with D/d≥1.0. The evaluated results for the radial porosity
profile are benchmarked with existing analytical equations and avail-
able experimental and numerical data, respectively, for mono-sized
spheres in cylindrical containers. In addition, a concise FORTRAN pro-
gram is presented for the new arc length-based technique so investiga-
tors can immediately make use of this simple method.

2. Radial porosity elements

Traditionally, the local radial porosity is represented as a dimension-
less packing system volumetric structural property having amathemat-
ical value between 0 and 1. This type of volumetric analysis has been

analytically derived byMueller [23] for the axially-averaged local radial
porosity of mono-sized spheres in cylindrical containers. Nevertheless,
recentlyMueller [34] has analytically established an area-based analysis
such that the axially-averaged local radial porosity of mono-sized
spheres in cylindrical containers can be obtained from the intersection
of a radial cylindrical surface of radius, r, from the origin, O, with that
of any sphere with a radial center position, rp, within a particle radius,
Rs, on either side of this radial cylindrical surface. This particular geo-
metrical condition is shown in Fig. 1 for the x–y view. An analogous
type of a sphere–cylinder geometrical surface interaction has also
been recognized and analyzed by Mariani et al. [31] together with geo-
metrical expressions and quantities that were defined and derived in
the investigation. However, for thismost recent analysis, the local radial
porosity at a particular axial position, εz(r), is defined and evaluated
in terms of an arc length, s, intersecting a sphere such that εz(r)=
svoid/stotal=(stotal−ssolid)/stotal=1−ssolid/stotal, where ssolid, svoid, and
stotal are the solid arc length (intersecting arc length), void arc length
(non-intersecting arc length), and total arc length (total radial arc
length, i.e. circumference), respectively, at the given radial distance
and axial position. The local radial porosity,which is a function of the ra-
dial position, for a cylindrical packed bed system ofmono-sized spheres
at a specific axial position is given by:

εz rð Þ ¼ 1− ssolid
stotal

¼ 1−
XN Rsð Þ

n¼1

sn rð Þ
sT rð Þ ; ð1Þ

where N(Rs) is the number of sphere particles located within a sphere
particle radius, Rs, on either side of the radial arc length, at a specific
axial position, at the radial position, r, sn(r) is the intersecting arc length
of an nth-sphere at the radial location, r, and sT(r) is the total radial arc
length at a radial location, r, and is easily found to be 2πr.

The intersecting arc length of an nth-sphere, sn(r) at a specific
axial location, z, and at the radial location, r, is shown in Fig. 1 and
in Fig. 2 as the arc length, s. This arc length can be analytically deter-
mined exactly from one principal equation for all intersecting geom-
etries that arise in a packed bed regardless of the location of the
sphere and the axial–radial arc length intersection. The principal
analytical equation for determining the intersecting arc length, s, is

Fig. 1. X–Y plane of intersecting sphere at radial position r.
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