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The packing of ternary mixtures of spheres with size ratios 24.4/11.6/6.4 is simulated by means of the discrete
element method. The packing structure is analyzed by the so called radical tessellation which is an extension
of the well-established Voronoi tessellation. The topological and metric properties of radical polyhedra are
quantified as a function of the volume fractions of this ternary packing system. These properties include the
number of edges, area and perimeter per radical polyhedron face, and the number of faces, surface area and
volume per radical polyhedron. The properties of each component of a mixture are shown to be strongly de-
pendent on the volume fractions. Their average values can be quantified by a cubic polynomial equation. The
results should be useful for understanding the packing structures of multi-sized particles.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The packing of multi-sized particles is an important operation re-
lated to the mineral, materials, pharmaceutical, chemical and other
industries [1]. Packing structure plays a very important role in charac-
terizing properties such as conductivity and permeability, which di-
rectly affect product quality or process performance [2,3]. However,
it is not easy to estimate structural properties by theoretical models.
In fact, to date, it is still difficult to measure experimentally structural
properties, in spite of the recent developments in non-invasive tech-
niques [4,5]. Computer simulation provides an effective alternative
to study the packing structure of particles. Previous studies were
mainly conducted by two types of models: sequential addition (see
[6–8] for example) and collective rearrangement (see [9–11] for
example). However, these models have to use different assumptions
to determine the motion of particles, which may not be able to gener-
ate results satisfactorily comparable with experimental observations
[12–17]. The discrete element method (DEM) can overcome this defi-
ciency because the dynamics of forming a packing is properly taken
into account. The validity and advantage of this simulation technique
have been demonstrated by various investigators [16–27]. Recently,
we used this simulation method to study the packing of ternary mix-
tures of particles [28], and found that the simulations are in good
agreement with the measured coordination number, one of the most
important structural properties [29,30].

It has been well established that the structure of a packing can be
quantified in terms of the metric and topological properties based on

the so called Voronoi tessellation [31]. Such analysis can provide
muchmore detailed information than the one-dimensional radial dis-
tribution function [32] and coordination number as well. The Voronoi
method has a rich history in the characterization of particle packing
since the work of Bernal [33] and Finney [34]. The original Voronoi
method tessellation is mainly used for the packing of uniform or
monosized spheres in the early studies [2,32–45]. But it has been ex-
tended to handle the packing of multisized particles, giving the so
called radical tessellation [46] and Johnson–Mehl tessellation [47].
The studies thus far are mainly focused on binary mixtures of particles
[48–52]. These studies are based on the results generated by the se-
quential addition or collective rearrangement, which, as discussed
above, may not be so realistic for granular materials.

In this paper, we perform a radical tessellation analysis on the
packing of ternary mixtures, in connection with our previous study
of the coordination number [28]. The metric and topological proper-
ties of each polyhedron are studied as a function of the volume frac-
tions of constituent components. Such detailed quantitative results
are useful for a better understanding of the complicated packing struc-
tures of particle mixtures.

2. Numerical method

DEM is used to generate the packing of a ternary mixture of
spheres. The translational and rotational motions of each particle are
described by Newton's second law of motion, where the gravity and
interparticle forces as well as torques are explicitly considered. Nor-
mally, the interparticle forces involved include the contact and non-
contact forces. As we are only concernedwith coarse and dry particles,
it is reasonable to ignore the relatively long range inter-particle forces,
such as the van der Waals, capillary and electrostatic forces [53,54].
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The detailed descriptions of the forces involved in the present study
can be found elsewhere [17,28], and thus will not be repeated here
for brevity.

Table 1 lists the parameters and their values used in this work. The
particle properties are the same as those used in our previous work
[28], which are close to those of glass beads. The present study focuses
on the effect of volume fractions XL, XM and XS (where L,M or S repre-
sents the large, medium and small components respectively, and XL+
XM+XS=1) for a given ternary particle system, with other properties
kept constant.

A simulation starts with the random generation of spherical parti-
cles of pre-set sizes in a rectangular container of the length of 10dL (di-
ameter of the large component) with no overlaps in particles, and the
porosity of the initial state is set to about 0.9 for all mixtures to ensure
consistency. Periodic boundary conditions are applied in two horizon-
tal directions to eliminate the wall effect [24,28,55]. To produce a sta-
ble packing, the particles are allowed to settle down, under gravity
and all other forces considered, until their velocities are essentially
zero.

The radical tessellation used here is an extension of the Voronoi
tessellation to a multi-sized particle system. Similar to the Voronoi
tessellation, the radical tessellation divides the whole packing space
into a set of non-overlapping convex polyhedra and each polyhedron
contains only one particle. The plane used in the radical tessellation to
separate two close particles is the assembly of points with equal tan-
gential distance to the two spheres, other than the bisecting plane.
Thus the polyhedron face as part of the plane is guaranteed to be out-
side the particles and will not intersect with any particles. The radical
tessellation retains most of the features of the Voronoi tessellation,
and it recovers the Voronoi bisecting plane for monosized particles.
The generation of radical tessellation in the present work is facilitated
by an open source program developed by Rycroft [56]. A typical illus-
tration of the tessellation of a ternary mixture is given in Fig. 1.

3. Results and discussion

3.1. Structural properties and their distributions

We considered the following properties of the radical tessellation:
(1) the polyhedron face related properties, which are the number of
edges e, perimeter L and area A of a polyhedron face; and (2) the poly-
hedron related properties, which are the number of faces f, surface
area S and volume V per polyhedron. Of these parameters, e and f are
known as typical topological properties, and the rests as metric prop-
erties. They are widely used in the structural analysis [32–52]. All
these properties are distributed variables, as a natural consequence
of the disordered structure of a packing. For each property x, we
consider its mean value for the whole packing, denoted as bx>, and
that for component i, namely, the individual mean value bxi>, where
i=L, M or S. We also consider the distributions of these properties
and individual component in terms of the probability density
functions p(x) and p(xi), respectively.

For the polyhedron related properties, the overall and individual
mean values and distributions satisfy the following relationships:

p xð Þ ¼ ∑
i
nip xið Þ ð1aÞ

xh i ¼ ∑
i
ni xih i: ð1bÞ

Similarly, the relationships for the polyhedron face related proper-
ties are:

p xð Þ ¼ ∑
i
nip xið Þ f ih i

� �
= fh i ð2aÞ

xh i ¼ ∑
i
ni xih i f ih i

� �
= fh i ð2bÞ

where ni is the number fraction of component i, which can be related
to volume fraction Xi by definition. The overall mean values and pack-
ing densities are shown in Table 2 for the 28 mixtures simulated. Note
that the 28 mixtures in this work include all the 15 mixtures in our
previous work [28], although their numbering may not be the same.
The added mixtures can add more information for the ternary system
considered.

The simplest topological properties are derived from the knowledge
of the number of faces per polyhedron, which provides the information
on the number of topological neighbors of the particle enclosed by the
polyhedron. For the random packing of monosized spheres, the average
face number is about 14 [57]. Interestingly, for the ternary system con-
sidered, the average number of faces b f> shows the same value and can
be treated as a constant as shown in Table 2, which is consistent with
the study of a binary packing system [48]. The number of edges per
face can be obtained according to Euler's formula [57,58]

eh i ¼ 6−12= fh i: ð3Þ

Thus, be> is insensitive to the changes in volume fractions Xi. By
contrast, the average metric properties all depend on Xi.

Table 1
Input values for simulating the packing of a ternary mixture of spheres.

Parametera Value

Particle size, d (mm) 24.4, 11.6 and 6.4
Particle density, ρ (kg/m3) 2.5×103

Number of particles, N 1000–55,400
Young's modulus, Y (N/m2) 1.0×107

Poisson ratio, ~σ 0.29
Sliding friction coefficient, μs 0.3
Rolling friction coefficient, μr 0.002
Normal damping coefficient, γn 2.0×10−5

Time step (s) 1.0×10−6

a It is assumed that the container has the same properties as particles.

Fig. 1. An isometric view of the radical tessellations for the packing of a ternary mixture
of the volume fractions of XL:XM:XS=66%:17%:17%.
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