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Flow behavior of liquid and solid phases is simulated by means of DEM-CFD in a liquid–solid fluidized bed.
The lubrication force is considered. A detailed description of the model equations used has been presented.
The distributions of velocity and volume fraction are predicted at the different superficial liquid velocities,
liquid viscosity and solids densities in the bed. The granular temperature is computed from simulated particle
velocity. Predicted solid axial velocities are in agreement with experiments. Simulations indicate that axial
velocities of particles increase with the increase in the superficial liquid velocity. The bed expansion height
is increased with an increase of superficial liquid velocity and liquid viscosity and decreases with the increase
of particle density. The lubrication force reduces granular temperature in the liquid–solid fluidized beds.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Solid–liquid fluidized beds have been widely used in industry for
hydrometallurgical operations, catalytic cracking, ion exchange, ad-
sorption, crystallization, sedimentation, particle classification, etc.
[1,2]. In the design of these solid–liquid fluidized beds, it is important
to understand and have an ability to predict the bed expansion and
particle mixing. These characteristics govern the equipment volume
depending upon the phase in which the reaction (and/or the mass
transfer) takes place. Further, the spatial distribution of solid phase
hold-up governs the flowpattern of solid and liquid phases and thus in-
directly affects the extent of intermixing and the rates of mass and heat
transfer.

As regards to mathematical modeling, computational fluid dynamic
(CFD) simulations of the flow in fluidized beds gives very detailed in-
formation about the local values of phase hold-ups and their spatial
distributions, liquid phase flow patterns and the intermixing levels
of the individual phases especially in the regions where measure-
ments are either difficult or impossible to obtain. Such information
can be useful in the understanding of the transport phenomena in
fluidized beds. In numerical simulation of fluidized beds, Eulerian–
Lagrangian models describe the fluid flow using the continuum equa-
tions, and the particulate phase flow is described by tracking themotion
of individual particles [3–5]. Discrete particle models (DPM) have been
used for a wide range of applications involving particles ever since it
was first proposed by Cundall and Strack [6]. A major difference with
these traditional DPM models is that a detailed description of the

gas-phase dynamics is required, in order to describe the interaction
between the particles and the fluid phase. The coupling of the DPM
with a finite volume description of the gas-phase based on the Navier–
Stokes equations was first reported in the open literature by Tsuji et al.
[7] and Hoomans et al. [8] for the soft-spheremodel and the hard sphere
model respectively. In a hard-sphere system the trajectories of the par-
ticles are determined by momentum-conserving binary collisions. The
interactions between particles are assumed to be pair-wise additive
and instantaneous. In the simulation, the collisions are processed one
by one according to the order in which the events occur. Note that the
possible occurrence of multiple collisions at the same instant cannot
be accounted for. At high particle number densities, the collisions will
lead to a dramatical decrease in kinetic energy. This is the so-called in-
elastic collapse McNamara and Young [9], in which regime the collision
frequencies diverge as relative velocities vanish. Clearly in that case, the
hard-sphere method becomes useless.

In more complex situations, the particles may interact via short- or
long-range forces, and the trajectories are determined by integrating
the Newtonian equations of motion. The soft-spheremodels use a fixed
time step and consequently the particles are allowed to overlap slightly.
The contact forces are subsequently calculated from the deformation
history of the contact using a contact force scheme. The soft-sphere
models or discrete element method (DEM) allow for multiple particle
overlap although the net contact force is obtained from the addition of
all pair-wise interactions. The soft-sphere models are essentially time
driven, where the time step should be carefully chosen in the calculation
of the contact forces. DEM-CFD simulations of single solid species in
liquid-particle flows were carried by Apostolou and Hrymak [10], show-
ing the ability to capture representative behaviors of the two-phase flow.
For binary mixtures fluidized by a liquid, a statistical mechanics model,
developed by Seibert and Burns [11], was shown to be able to capture
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the expansion behavior as well as some features of the components' dis-
tribution along bed height. Mukherjee and Mishra [12], by a simplified
hydrodynamics combined to DEM, proved the capability of their model
to reproduce qualitatively the layer inversion phenomenon for selected
binaries fluidized by water. Agreement, again only in qualitative terms,
of DEM-CFD simulations with physical observations of layer inversion
in liquid-fluidized beds has also been reported by Zhou and Yu [13],
who adapted a mono-disperse drag law to account for the presence of
a two-size mixture. Renzo et al. [14] predicted the layer inversion by
means of DEM-CFD in a liquid–solid fluidized bed. The simulations not
only demonstrate the importance of correctly accounting for the local
size distribution in the bed, but also prove the validity of the overall com-
putational approach. The predictions of the simulations depend on the
system considered, both in terms of critical velocity and, expansion of
the individual components in the bed. Definitely, DEM-CFD may allow
to investigate the local particle flow field, highlighting themotion of par-
ticles in apparently chaotic vortices continuously forming and disap-
pearing, which is thought to be the mechanism responsible for mixing
of particles in the bed. However, detailed and quantitative comparisons
with published experimental data are still lacking.

With regards to mathematical modeling, CFD simulations of the
flow in liquid–solid fluidized beds gives very detailed information
about the local values of concentrations and their spatial distributions,
especially in the regionswheremeasurements are either difficult or im-
possible to obtain. Such information can be useful in the understanding
of the transport phenomena in liquid–solid fluidized beds. Though a
large number of numerical simulations and experimental observations
have been made, to understand the hydrodynamics in liquid–solid flu-
idized beds is still required. Quantitative understanding is also needed
to explain the effects of liquid velocity and particles sizes. In this
study, DEM is used to simulate the liquid–solid two-phase flow. The
hydrodynamics of liquid–solid fluidized bed is analyzed to understand
the flow phenomena.

2. Eulerian–Lagrangian gas–solid flow model

The DEM-CFD approach is relatively well documented in the litera-
ture [3–5,13], so here the salient features of the model equations used
will be summarized. Our DEM-CFD implementation uses a rather stan-
dard coupled approach based on the particle-scale Discrete Element
Method for the solid phase [6] and a local average CFD approach for
the fluid phase [8].

2.1. Equation of motion for liquid phase

Generally in numerical simulation of fluid flow, the fluid motion is
considered two-dimensionally as a function of t, x and y. The fluid
phase flow is solved by a locally averaged approximation of the con-
tinuity and Navier–Stokes equations with an averaging scale of the
order of the computational cell (typically a few particle diameters).
The equations of conservation of mass and momentum are:

∂ ρlεlð Þ
∂t þ∇⋅ ρlεlulð Þ ¼ 0 ð1Þ

∂ ρlεlulð Þ
∂t þ∇⋅ ρlεlululð Þ ¼ −εl∇P þ εl∇⋅τl þ εlρlg−Fpl ð2Þ

where g is the acceleration due to gravity, P the liquid pressure, εl the
liquid volume fraction, and τl the viscous stress tensor. The coupling
term Fpl between the particle phase and liquid phase is estimated as
the sumof the drag on each particlewithin the correspondingfluid con-
trol volume. The stress tensor of liquid phase can be represented as

τl ¼ μ l ∇ul þ ∇ulð ÞT
h i

−2
3
μ l ∇⋅ulð ÞI ð3Þ

where μl is the viscosity of liquid phase.

2.2. Equation of motion for a particle

Spherical particles of uniform size are investigated in present work.
The particles are tracked individually by the Newton's second law of
motion. Each particle has two types of motion, translational and rota-
tional motions. The motion of each individual particle is governed by
the laws of conservation of linear momentum (Newton's second law
of motion) and angular momentum, expressed, for the i-particle, by

mi
dvi
dt

¼ −Vp∇P þmig þ f d þ f m þ f l þ f c ð4Þ

Ip
dω
dt

¼ Tp ð5Þ

wheremi and vi are themass and velocity of a particle, Vp is the volume
of a particle in the liquid cell, ρi is the density of liquid . The terms of the
right-hand side of Eq. (4) are the liquid pressure gradients, gravity, drag
force exerted from the fluid, virtual mass force, lubrication force and
contact force. Tp is the torque arising from the tangential components
of the contact force. Ip and ω are the moment of inertia and angular
velocity of a particle.

The liquid–solid interaction force, or drag force, is determined at
each particle. The drag force depends on not only the relative velocity
between the solid particle and fluid but also the presence of neighbor-
ing particles, i.e., local volume fraction of solid phase. The drag force is
expressed by considering these factors as follows:

f d ¼ βVp

1−εl
ul−up

� �
ð6Þ

where εl and β are the volume fraction of fluid and an inter-phase mo-
mentum transfer coefficient. A proper dragmodel for the description of
β is vital in solid–fluid interaction problems. The correlations given by
Gidaspow [15] are often used. The correlation is a combination of the
works of Ergun [16] and Wen and Yu [17]; the formulation presented
by Ergun [16] is used at the liquid volume fraction less than 0.8 where
the suspension is dense, whereas the formulation by Wen and Yu [17]
is used at the liquid volume fraction greater than 0.8 where the suspen-
sion is dilute.

βE ¼ 150
1−εlð Þ2μ l

εldsð Þ2 þ 1:75
ρl 1−εlð Þ ul−usj j

εlds
εl ≤ 0:8 ð7aÞ

βWY ¼ 3
4
Cd

ρl 1−εlð Þ ul−usj j
ds

ε−2:65
l εl > 0:8 ð7bÞ

Cd ¼
24
Re

1þ 0:15Re0:687
� �

Re≤ 1000

0:44 Re≥ 1000

(
ð8Þ

The transition proposed by Gidaspow [15] makes the drag law
discontinuous in liquid volume fraction it is continuous in Reynolds
number. Physically, the drag force is a continuous function of both
solid volume fraction and Reynolds number, and therefore the con-
tinuous forms of the drag law may be needed to correctly simulate
liquid–solid fluidized beds. To avoid discontinuity of these two cor-
relations, a switch function φ is introduced to give a smooth from
the dilute regime to the dense regime [18]

φ ¼
arctan 150� 1:75 0:2−εp

� �h i
π

þ 0:5 ð9Þ

Thus, the interface momentum transfer coefficient becomes

β ¼ 1−φð ÞβE þ φβWY ð10Þ
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