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The powder forming industry looks to produce parts of increasing geometrical complexity as it is seen as a
very efficient production process. This offers new challenges as three-dimensional states of stress are in-
duced. In particular, granular and porous materials respond very differently to tensile and compressive stres-
ses. Since experiments conducted in the 1990s, little exploration of the Lode dependency of powders was
carried out. The present work investigates the effect of Lode dependency through numerical simulation, aim-
ing to establish whether it affects the outcome of a compaction cycle and whether further experimental study
of the phenomenonmay be justified. To this effect, a Lode dependent model was developed and implemented
in a finite element code, then two case studies were carried out. The results show that there is little impact on
the density contours within the components and the stress levels during the compaction. As the parts are
ejected from the die, surface stress levels are affected and this is of great interest when studying the onset
of defects in powder compacts.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The cold die powder compaction manufacturing process is a pop-
ular manufacturing route for small and relatively geometrically sim-
ple components. This is due to its high material usage as the parts
are produced to near finished dimensions from the powder. The
manufacturing process is a very challenging one which can be inves-
tigated using several analytic disciplines of engineering: fluid [1] and
solid mechanics [2] with discrete [3] or continuous approaches [2],
[4]. Other empirical techniques can be also considered [5]. The pre-
sent document concerns itself with the forming phase of the process,
starting when the die has been filled with powder and ending when
the compact is fully ejected. This process is well documented experi-
mentally and analytically [6,7]. The analysis technique chosen is
based on the finite element analysis of axisymmetrical compacts.
The geometrical choice is due to industrial relevance and the simpli-
fications it allows in the modelling process. The choice of the tech-
nique is due to the broad range of differential equation based
problems that it can solve. A solid mechanics formulation based on
large strain and a plasticity formulation is used to model the irrecov-
erable deformations. This choice is supported by numerous publica-
tions demonstrating the ability of plasticity models to simulate
powder behaviour. Experimental and numerical investigations are
often conducted closely in fields of industrial relevance and many
publications show that this applies to simulations of powder

compaction and models can now produce reliable density contours
[8]. The results are however less reliable regarding the prediction of
tools forces, where relatively large error margins are still encoun-
tered. An experimental study conducted by Mosbah et al. showed
that ejection forces and residual stresses are usually over-predicted
by models than actually encountered in experiments [9]. The authors
concluded that the effects of Lode dependency were disregarded and
may have had an important role, this result can be intuitively under-
stood as granular materials are not expected to respond in the same
fashion if they are under tensile or compressive stress. This conclu-
sion was later supported by the work of Shima, which demonstrated
experimentally that the powder behaviour is influenced by the third
deviatoric stress invariant, and is therefore Lode dependent [10,11].
Although the latter work supports the hypothesis formulated by Mos-
bah et al., it is not sufficient to confirm it. Due to the difficulties of
measuring residual stresses in green compacts, by nature very fragile,
experimentalists have since given very little attention to this topic.
The present work aims to investigate the extent to which the Lode
angle influences the behaviour of the material during the forming
phase of the process. To do so, a Lode dependent numerical model
was developed for powders and implemented in a finite element
code. Two test cases were selected and their compaction cycle simu-
lated to quantify the impact of Lode dependency, the first one is a
simple cylinder and the second one a stepped component. Particular
attention was given to the internal stresses and tool forces. The
work does not aim to give an exact simulation of Lode dependency
at the current stage of research as there is too little experimental
work to support a particular Lode dependent model. Rather, the pre-
sent work seeks to establish whether there is cause to explore further
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Lode dependency in powder compacts, and if so, the context in which
it matters.

2. Basis of elasto-plasticity

Elasto-plastic models are used for the simulations of the powder
compaction process although the mechanisms are not strictly elasto-
plastic at all times. This approach has been taken historically because
it is a convenient way to represent non-recoverable strains incurred
under stress. Non linear models, with hardening rules, are particularly
suited to simulate the densification process. The mathematical basis of
elasto-plasticity is laid out in numerous publications. The reader is re-
ferred to Crisfield, for example, as a source ofmore detailed information
[12]. In powder compaction, yield models are particularly challenging
due to their dependence on density or potentially other state variables
such as work, which governs the material's hardening. Classical
elasto-plasticity yield models are based on an elasticity domain, the de-
composition of strains and a yield criterion. It is assumed that the strain
increments can be decomposed in their elastic and plastic fractions, Δ�e

and Δ�p:

Δ�¼ Δ�e þ Δ�p ð1Þ

in which superscript e refers to fraction of the strain increment and the
superscript p refers to plastic strain fraction. The strain decomposition
can be substituted into Hooke's law of elasticity:

Δσ ¼ CΔ�e ¼ C Δ�−Δ�pÞ� ð2Þ

in which σ is the stress vector and C is the matrix of elastic coefficients.
The set of admissible stresses is governed by a yield function f. Plastic
flow occurs if f=0. The function f cannot take a positive value as it
bounds the admissible stresses. If fb0, plastic loading does not occur
and there is no plastic flow. In this case the behaviour is elastic and
the stresses can be updated by:

σk ¼ σk−1 þ Δσ ¼ σk−1 þ CΔ�¼ σk−1 þ C Δ�−Δ�pÞ:�
When plastic loading occurs, it is governed by a flow rule:

Δ�p ¼ λ
∂g
∂σ

in which g is the plastic potential function and λ the plastic multiplier.
In this work, the plastic potential and the yield surface are considered
associated, so f=g. Additionally, the model is rate independent, so
the equivalence between the rate equations and the incremental
form can be exploited. From the flow rule and Hooke's law, the
stress–strain relationship can be written in the case of plastic loading:

Δσ ¼ C Δ�−λ
∂f
∂σ

� �
: ð3Þ

This expression leads to the formulation of the elastic prediction
for the incremented stresses and to the basis for a return to the
yield surface when the elastically incremented stresses are not in
the elastic domain:

σ ¼ σ0 þ C Δ�−λ
∂f
∂σ

� �
ð4Þ

in which the elastically predicted stress is σe=σ0+CΔ�. The return
to the yield surface is carried out through an iterative process. The
plastic multiplier must be positive and satisfy the yield function.
The equations involved can be highly non linear and the success of
the return to the yield surface is dependent on the yield function,
which must be formulated to ensure the unicity of the solution.

3. The modified CamClay model for powders

There are a number of yield surface forms that may be adopted.
Common forms include an ellipse, e.g. modified CamClay by Lewis
and Schrefler or Mosbah et al. [13,9], and two-surface models such
as the Drucker–Prager model enclosed by a shear failure envelope
and a compaction cap [14]. In the modified CamClay model available
in the literature, the yield surface can be expressed as a function of
the pressure, P, and equivalent stress, Q:

f ¼ P−P1ð Þ2
P2
0

þ Q2

Q2
0

−1

P0, P1 and Q0 are coefficients governing the material hardening
properties. For convenience of use when introducing the third
deviatoric stress invariant, this can be rewritten as a function of
the first stress invariant and the second deviatoric stress invari-
ant:

f ¼ 27J2 þM I1−Icð Þ I1−I0ð Þ ð5Þ

in which I1=σii=−3P is the first stress invariant, J2 ¼ �σ ij �σ ij

2 ¼ Q2

3 is
second deviatoric stress invariant with the deviatoric stress ma-
trix �σ ¼ σ− I1

3 I. The hardening coefficients are: I0=−3(P0+P1),
Ic=−3(P1−P0), and M ¼ Q2

0
P20
. They are functions of the density

which is used as a hardening variable. The model is associated,
thus the derivative of the plastic potential for the flow rule is:

∂f
∂σ ij

¼ 27 �σ ij þM 2I1−I0−Icð Þδij

where δij is the Kronecker delta function. The stress increments in
Eq. (3) can be written in a tensor form as:

Δσ ij ¼ Cijkl Δ�kl−λ
∂f
∂σkl

� �
: ð6Þ

The development of the term Cijkl
∂f
∂σkl

from the equation above
gives:

Cijkl
∂f
∂σkl

¼ E
1þ ν

∂f
∂σ ij

þ νE
1−2νð Þ 1þ νð Þ tr

∂f
∂σmn

� �
δij:

With tr ∂f
∂σmn

� �
¼ 3M 2I1−I0−Icð Þ, this leads to:

Cijkl
∂f
∂σkl

¼ E
1þ ν

27 �σ ij þM 2I1−I0−Icð Þδij
� �

þ 3νME 2I1−I0−Icð Þ
1−2νð Þ 1þ νð Þ δij

Cijkl
∂f
∂σkl

¼ 27E
1þ ν

�σ ij þ
ME

1−2ν
2I1−I0−Icð Þδij:

ð7Þ

In a fully implicit integration, the stress is considered at the end of
the step and substituting Eqs. (6) and (7) into Eq. (4) gives:

σ ij ¼ σe
ij−λ

27E
1þ ν

�σ ij þ
ME

1−2ν
2I1−I0−Icð Þ

� �
: ð8Þ

Eq. (8) can be split into the hydrostatic and deviatoric contribu-
tions. The hydrostatic part is given by:

I1 ¼ Ie1−λ
3ME
1−2ν

2I1−I0−Icð Þ:

From this, the expression for λ is:

λ ¼ Ie1−I1
� 	

1−2νð Þ
3ME 2I1−I0−Icð Þ : ð9Þ

124 S.A. Rolland et al. / Powder Technology 221 (2012) 123–136



Download English Version:

https://daneshyari.com/en/article/237219

Download Persian Version:

https://daneshyari.com/article/237219

Daneshyari.com

https://daneshyari.com/en/article/237219
https://daneshyari.com/article/237219
https://daneshyari.com

