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The paper presents a theoretical study of the source of the spinning movement of the solid particles flowing
in a moving fluid and the influence of the resulting Magnus force on the particles' trajectories along the
stream lines, based on interactions occurring in the boundary layers. The subject is important for technolog-
ical applications, like aerodynamic separation process of a mixture of solid particles. First, it is shown that the
boundary layer equations generate local soliton-type, kink-type and soliton-kink-type nonlinear solutions for
the velocity field. Using Prandtl's equations for boundary layer, nonlinear solutions of the velocity field are
obtained. It was found that through the interaction on the boundary layers, the transition from the move-
ment on continuous and differentiable curves (stream lines) to the movement on continuous and non-
differentiable curves (fractal curves) occurs. This last characteristic can be used in the separation process of
the solid components from a heterogeneous mixture.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Flows including solid particles are often observed in industry and na-
ture.Whatever the source, amixture of solid particles is a heterogeneous
mixturewith components having different properties. Knowledge of the
exact components helps the correct choice of the separation processes
and techniques. When solid mixture components are different by their
behavior in the air flow, the separation can be achieved through aerody-
namic properties. The knowledge of these properties is important be-
cause they represent the base for the proper choice and adjustment of
air flow rate, for the calculation and design of pneumatic systems used
for sorting, cleaning or transport of the mixture.

Aerodynamic separation process of a mixture of solid particles has
applications both in industry [1–3] and agriculture [4–7]. Recently,
the researches in the field placed particular emphasis on environ-
mental protection, one of the studied issues in this direction being
the optimization of air depollution installations [8]. Many studies inves-
tigated the influence of dimension, form and density of solid particles
on speed flow [9–15].

Solid particlesmay change the flow characteristics and accordingly
affect the transfer of energy [16–19]. Moreover, the turbulence

mechanism of particle-laden flows [20,21] is not yet well understood
[18,22].

The particle rotation is an important factor in the flow involving
fluids and solid particles because the lift force influences the particle
distribution [23–25]. Usually, flow processes don't take into account
the impact of the dynamics in the boundary layer. Thus, this paper
presents a theoretical study of the source of the spinning movement
of the solid particles flowing in a moving fluid and the influence of
the resulting Magnus force on the particles' trajectories along the
stream lines, based on interactions occurring in the boundary layers.
For this, the motion of a flat solid particle in a real fluid stream with
constant velocity was considered. It was assumed that the flow
from the boundary layer around the solid particle is bi-dimensional
V(x,y)=u(x,y)i+w(x,y)j. The fluid rotation movement from the
boundary layer is transmitted, through the friction effect, to the par-
ticle. Thus, around the particle appears the circulation of the velocity
Γ (Magnus effect) and, accordingly, a lift force. As a result of rotational
speed induced on particle, the particle acquires additional kinetic
energy that allows “jumps” from its own stream line to another. The
knowledge of the particles' movement on continuous and non-
differentiable curves (fractal curves) can be used to explain the sepa-
ration mechanism of the solid components from a heterogeneous
mixture.

The study is structured as follows: in Section 2 considerations on
generation and dynamics analysis in the boundary layer are made;
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Prandtl's equations for boundary layer and nonlinear solutions of the
velocity field are obtained in Section 3; in Section 4 the force field in-
duced by Magnus effect is given.

2. Considerations on generation and dynamics analysis in the
boundary layer

Let us consider a solid particle with negligible weight having the
order of magnitude of the surface S of 10−6 [m2] and a real fluid
with the viscosity coefficient ν=14·10−6 [m2/s]. The velocity of
the fluid current V0[m/s] is constant. As a consequence of the bi-
dimensional and permanent character of the movement, in any
point of the fluid mass the local velocity can be written as:

V x; yð Þ ¼ u x; yð Þiþw x; yð Þj:

If the Reynolds number associated to the flow is big enough, but
still smaller than the critical value, then the movement in its ensemble
has a laminar character. As a consequence, the dynamic equilibrium
equations which describe the movement are [18,22]:
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The continuity equation:

∂u
∂x þ

∂w
∂y ¼ 0 ð2Þ

is added to the equation system (Eq. (1 a, b)). In the system of Eq. (1
a, b) the unknown variables are the scalar components u(x,y) and
w(x,y) of the local velocity V(x,y).

In the above mentioned conditions, the real fluid flowing around
the solid particle determines the formation of the limit layer around
it. In the limit layer the particle movement takes place naturally
along a current line, which is a differentiable curve given by the equa-
tion:

dx
u x; yð Þ ¼

dy
w x; yð Þ ¼ const: ð3Þ

If the energy transfer from the moving real fluid to the particle is
high enough, this can jump from a current line to another. In this
case, the movement takes place on non-differentiable curves, i.e. on
fractal curves. Let δ(x) be the local thickness of the limit layer formed
on one side of the particle. The interaction between the limit layers of
two particles which approach each other at a distance δ(x)bεb2δ(x)
can be analyzed.

In fluids in motion, the particles which build the base of the contin-
uous medium are parts of the fluid. Their dimensions are considered in
such away that the average characteristics of themotion (in the volume
V) satisfy certain smoothing conditions (the functions which define
them and their derivatives are continuous to a certain order). In the
case of sub-particles, thesemeasures present certain jumps and sudden
variations in connection with the sensitive fluctuant number of mole-
cules from sub-particles. As a consequence, the average characteristics
do not represent either information at molecular level, or information
at the continuous medium level. In deducing Navier–Stokes equations
for the continuous fluid medium, the dimension of the particles and
the distance between them does not intervene either way, due to the
fact that these aspects were not taken into account when establishing
the bijective correspondence between the particle set and the Euclidian
space set R3. Experimentally though, it is possible to determine the

particles' dimension corresponding to the continuous medium model;
this dimension is called “scale of the fluid movement”.

A particular continuous fluid medium model is that of the ideal
fluid for which, instead of the Navier–Stokes equations, Euler's equa-
tions are used. According to this model, the fluid particle must be
characterized by:

∫
V
∇� V x; yð ÞdV ¼ 0:

There is a potential model in any fluid movement, but not at any
dimension scale.

The potential models of permanent incompressible movements
around obstacles represent solutions of the boundary problem

αVc þ β
∂Vc

∂n

� �
¼ Φc;V0 ¼ Φ0 ð4Þ

for the Laplace equation:

ΔV ¼ 0;

where V=V(x,y,z) is the velocity, (x,y,z)∈D is the movement domain,
C is the boundary of D and has the external normal H. The index c
shows that the values are taken on the contour C; the index
0 shows that the values are taken at long distances while α and β
are constants. When the functions VC; V0; ΦC; Φ0; and C are regular
functions, the elliptic Eq. (4) has a unique solution determined by
those measures. In the case when these equations of type (4) present
singularities, solutions can be built in the regularity domain (coherence)
by isolating neighborhoods of the singularities. The solution in one point
describes the behavior of the particle centered in that point and having
the dimension (order of magnitude) δb10−2 Lwhere L is the character-
istic dimension of the body. This solution is physically possible if and only
if [26,27]:

i) in any domain, no matter how small, where:

∇� V ¼ 0

is punctual;
ii) in domains of volume V where formula

∫
V
∇� VdV ¼ 0

is satisfied;
iii) in the domain with maximum dimension for which V0=const.

If one gets lower than Vinferior, then we have:

∫
V
∇� VdV≠0

for any V⊂Vinferior. This fact leads us to the conclusion that the di-
mensional scale is given by Vinferior. As a consequence, as long as we
are not interested in the local behavior, the global characterization
through the condition

∫
V
∇� VdV ¼ 0

is sufficient and the potential solution is acceptable. Its physical sig-
nificance ceases when the dimension d of the particles is no longer
the same in the entire field of motion.

The potential solution of the movement corresponds to a minimum
of kinetic energy, fact that explains the tendency of the fluids to corre-
spond to this solution at global scale. By “optimizing the energy at global
scale” we understand that the perturbations due to the presence of the
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