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Cluster settling plays an important role in the sedimentation of dilute suspensions. Studies of isolated clusters
indicate that they show considerable stability. In particular, spheres initially arranged in a horizontal isosceles
triangle or rhombus exhibit simple periodic motion as they descend. Moving one sphere outward along the
long diagonal of a rhombus produces a kite configuration that settles with a complicated periodic motion
relative to its center of mass, which exhibits a back-and-forth movement as it descends. This makes the kite
configuration the second member of a class between small clusters with simple periodic motions and isolated
clusters that merely remain intact for a considerable time. If the displacement along the diagonal is too great,
one sphere is left behind. Higher-order terms, which have little effect on widely separated spheres in a
rhombus, are important in maintaining the periodicity of the kite configuration and in slowing its breakup.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Interest in the sedimentation of small clusters of identical spheres
arises from two different sources. One, summarized by [1], is the
increasing power of theoretical analyses to handle simple systems of
several spheres. The other is the recognition of the importance of cluster
settling, especially in very dilute suspensions [2–12]. In suspensions
with 0.005bφb0.03 (where φ is the solids fraction), the important
feature is not close pairs, but fairly close neighbors [10]. These settle as a
transient, loose cluster. Some spheres break off and other spheres join
[9,11,12]. As the denser regions move rapidly downward, spheres in
more dilute regions may be stationary or even move upward [9]. The
interest in cluster settling in suspensions led to experimental studies of
isolated dense clusters [13–15]. These showed considerable stability:
some clusters broke up or shed spheres as they settled, but others
remained intact. These could bemodeled as a liquid dropwhose density
and viscositywere determined by the value ofφwithin the boundary of
the cluster [14]. There have also been some computational studies of
fairly large clusters of identical spheres [16,17].

Interest in the theoretical and computational aspects of cluster
settling was spurred by an experimental study of the sedimentation of
spheres arranged in regular polygons [18,19]. Though the earliest
work focused on the three-sphere isosceles triangle [20–22], the four-
sphere cluster is the prototype of isolated clusters that circulate as

they travel downward [13,14]. Tory et al. [23] showed that four spheres
initially arranged in the shape of a horizontal rhombus exhibited a
periodic motion. The orbits with respect to the center of mass ranged
from almost elliptical for very slight deviations from a square [24] to
egg-shaped for fairly small deviations. Larger deviations led to orbits
with two inflection points. These orbits became very elongated for large
deviations. Finally, the two closely spaced spheres broke away if the
other two spheres were sufficiently far apart [23]. Unlike spheres in an
isosceles triangle, whose mean velocity um changes direction as they
descend, um=umk for spheres arranged in a rhombus [23]. The
variation of um with time is approximately sinusoidal [23].

An outward displacement of one of the spheres on the long diagonal
of a rhombus produces a “kite” configuration (Fig. 1). Simulations
[23,25] in which the displacement was small showed that the orbit of
the displaced sphere was confined to a narrow band. Larger displace-
ments produced a broader band and still larger displacements led to
very complicated paths. Nevertheless, the cluster usually remained
intact. In many respects, these results parallel those for three spheres.
Those arranged in an isosceles triangle [20–22] exhibited periodic
motion; asymmetric arrangements exhibited nearly periodic motion
and the three-sphere cluster remained intact [21]. Snook et al. [26]
found complicated periodicities in the trajectories of spheres slightly
displaced from an isosceles triangle. This suggested that the kite
configuration might show similar behavior.

2. Mathematical treatment

Our treatment is based on an idealization known as the steady
Stokes equations, which also apply to unsteady flow when the terms
related to time-dependence are negligible. The particles are identical
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spheres and the fluid is Newtonian and incompressible. The
theoretical solution can be approximated experimentally by ensuring
that the spheres are large enough that Brownian motion is negligible,
but small enough that inertial effects are also negligible. In
experimental work, this balance is often achieved by using a fluid
that is much more viscous than water [9,12,32]. Boundaries must be
distant and the only force is that of gravity.

In the treatment that follows, distance is made dimensionless by
dividing by the sphere radius a, velocities by dividing by the Stokes
velocity u0, and time by multiplying by u0/a.

2.1. Kite configuration

Fig. 1 shows a kite configuration with spheres at dimensionless
positions (x1,0,z1), (x2,y2,z2), (x3,0,z3), and (x4,y4,z4) where x1N−x3
initially. Though some of the symmetry of the rhombus is lost, some
symmetries remain, viz., x4=x2, y4=−y2, z4=z2. Clearly, these
symmetries will be preserved throughout the descent.

Coupled linear equations relate the translational and rotational
velocities of particles to the forces and torques that they exert on the
fluid [27,28]. The torque on a freely rotating sphere is zero, so we need
to consider only the forces. With terms to O(r−7), the dimensionless
velocity of each sphere is given by

−ui = Ai1 + Ai2 + Ai3 + Ai4ð Þ·k; ð1Þ

where Aij is the dyadic (second-rank tensor) given by Eq. (7) of Kamel
and Tory [27]. This equation is a dimensionless version of results from
Table II and Eqs. (6.19)–(6.25) of Mazur and van Saarloos [28].
Positions and velocities are positive upward. Ladd's method [29] is
useful for spheres that are close together [22,26]. For two simple
cases, Ladd [29] has shown that it gives very nearly the same results as
Eq. (1) with terms to O(r−7). For widely separated spheres in simple
periodic motion, terms of O(r−1) are often sufficient [23]. However,
themuch greater accuracy of Ladd's method serves as a check and also
covers many more cases.

2.2. Equations for the velocities of widely separated spheres

In our earlier work on the sedimenting rhombus [23], a study of
widely separated spheres proved useful in understanding their orbits.
For simplicity, we will use only the first two terms of Aij for spheres
that are far apart, reserving Ladd's method for the general case. Thus

Aij ≈ δijI+3 I + r̂ij r̂ij
� �

= 4rij
� �

ð2Þ

where r̂ij is a unit vector and rij is the dimensionless distance from
sphere i to sphere j. From Eqs. (1) and (2), a straightforward calcu-
lation using the symmetries noted above yields

−u1 = 1+3= 2r12ð Þ + 3= 4r13ð Þ +3z212= 2r 312
� �

+3z213= 4r313
� �h i

k

+ 3x12z12= 2r312
� �

+3x13z13= 4r313
� �h i

i;
ð3Þ

−u2 =
h
1 + 3= 4r12ð Þ +3= 4r23ð Þ +3= 4r24ð Þ +3z212= 4r312

� �

+ 3z223= 4r323
� �i

k + 3x12z12= 4r312
� �

+ 3x23z23= 4r323
� �h i

i

+ 3y12z12= 4r312
� �

+ 3y23z23= 4r323
� �h i

j;

ð4Þ

−u3 = 1 + 3= 4r13ð Þ + 3= 2r23ð Þ + 3z213= 4r313
� �

+ 3z223= 2r323
� �h i

k

+ 3x13z13= 4r313
� �

+ 3x23z23= 2r323
� �h i

i;
ð5Þ

−u4 =
h
1 + 3= 4r12ð Þ + 3= 4r23ð Þ + 3= 4r24ð Þ + 3z212= 4r312

� �

+ 3z223= 4r323
� �i

k + 3x12z12= 4r312
� �

+ 3x23z23= 4r323
� �h i

i

− 3y12z12= 4r312
� �

+ 3y23z23= 4r323
� �h i

j; ð6Þ

where

xij = xj−xi; yij = yj−yi; zij = zj−zi; ð7Þ

rij = x2ij + y2ij + z2ij
� �1=2

; ð8Þ

and ui= idxi/dt+ jdyi/dt+kdzi/dt. Owing to the symmetry of y2 and
y4, x4=(x4,y4,z4) can be calculated from x2. Thus, there are only seven
scalar differential equations to solve. These, together with the
symmetry condition, yield the trajectories of the four spheres.

2.3. Equations for the velocities relative to the center of mass

The mean velocity of the four spheres is

−um =
h
1+3= 4r12ð Þ + 3= 8r13ð Þ + 3= 8r24ð Þ + 3= 4r23ð Þ + 3z212

� 4r312
� �

+ 3z213= 8r313
� �

+ 3z223 = 4r323
� �i

k +
h
3x12z12= 4r312

� �

+ 3x13z13= 8r313
� �

+ 3x23z23= 4r323
� �

�i: ð9Þ

For the rhombus, z13=0, r12=r23, x12=x23, and z12+z23=0,
which eliminates the term in i. Thus, the kite configuration (unlike the
rhombus) has a mean velocity with a horizontal component. Eq. (9)
shows that ym(t)=0 for both configurations, where ym is the y-
component of the center of mass. We can easily derive the velocities
relative to the center of mass

−u1 + um = 3=4ð Þ
h
1=r12 + 1= 2r13ð Þ + z212=r

3
12 + z213= 2r313

� �

−1= 2r24ð Þ−1=r23−z223=r
3
23

i
k + 3=4ð Þ

h
x12z12=r

3
12

+ x13z13= 2r313
� �

−x23z23=r
3
23

i
i ð10Þ

−u2 + um = 3=8ð Þ 1=r24−1=r13−z213=r
3
13

h i
k− 3=8ð Þ x13z13=r

3
13

h i
i

+ 3=4ð Þ y12z12=r
3
12 + y23z23=r

3
23

h i
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Fig. 1. Kite configuration. Initially, all spheres are in the same horizontal plane.
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