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This paper presents an extension of a mathematical model for particle attrition inside a fluidized bed by a
supersonic air jet and its application to optimize the nozzle design. A new method to calculate grinding
efficiency is presented. Also, heat transfer is included in themodel because of the large interfacial temperature
difference. Numerical simulations are conducted to investigate various nozzle designs, i.e. a range of area
ratios (indicative of the jet being over- or under-expanded) and nozzle expansion angles, and different bed
fluidization velocities. It is found that the perfectly expanded nozzle (the exit pressure equal to the outside
pressure) provides better attrition performance than over- and under-expanded jets. The nozzle expansion
angle also has an influence on the grinding efficiency: narrow angled nozzles have higher grinding efficiency.
In addition, the analysis of various bed fluidization velocities indicates that increasing the velocity results in a
modest improvement of the grinding efficiency.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In many chemical processes involving fluidized beds, particle size
grows due to agglomeration, granulation and other processes. One of
the methods to control particle size inside the reactor is to break them
up into smaller ones. This is achieved by an array of supersonic
nozzles that are located circumferentially in the lower part of the
reactor (note that larger particles are segregated towards the bottom
of the bed) and directed towards the reactor axis. Steam, supplied
through these nozzles, accelerates particles entrained in the jet, which
facilitates inter-particle collisions with high impact velocity. Such
collisions lead to the effective reduction of the size of bed particles
through particle breakage, called attrition. This process is limited by
the amount of available steam; therefore, it is very important to use it
with the highest efficiency by optimizing the nozzle design and
placement.

The reactor environment, which quite often is characterized by
extremely high temperatures and high pressures, may make experi-
mental investigations at actual process conditions practically unfeasible.
Instead, the experiments are usually conducted at room temperature
and atmospheric pressure using air in place of steam. McMillan et al.
[1,2] studied the influence of the nozzle design experimentally for
scaled-down versions of the nozzle. They demonstrated that increased
inlet pressure with a constant exit diameter and an increased exit
diameter with constant inlet pressure resulted in better grinding
efficiency, which was defined as the ratio of the increase of the particle

surface area to the mass flow rate of supplied gas. In addition, it was
shown that the larger fluidization velocities were also beneficial for
particle attrition.

As actual process conditions are unattainable in experiments, the
only remaining option is to model the attrition process either
analytically or numerically. Recently, Pougatch et al. [3] proposed a
mathematical model that simulates particle attrition by a supersonic
gas jet. This model was applied to the results of the small scale
experiments of sand particle attrition [1] and demonstrated a fair
agreement in reproducing experimentally observed trends and
grinding efficiency values.

In the present paper, an attrition model is used to determine the
optimal area ratio of the expansion section of the convergent-divergent
(Laval-type) nozzle to provide the best grinding efficiency and to
investigate the influences of the nozzle expansion angle and the bed
fluidization velocity.

2. Numerical model

The numerical model is based on an Eulerian–Eulerian approach
and the Kinetic Theory of Granular Flow (KTGF) to close the equations
for the particulate phase. The mean average particle diameter
represents the local particle size distribution. To account for the
reduction in the particle size during attrition, we allow spatial and
temporal variations of the average particle diameter throughout the
flow field. For the sake of brevity, as the model was already described
in detail in [3], we present the equations here in a table form while
emphasizing the additions andmodifications that are necessary for an
application to an industrial scale nozzle.

Powder Technology 209 (2011) 35–45

⁎ Corresponding author. Tel.: +1 604 822 2732; fax: +1 604 822 2403.
E-mail address: msal@interchange.ubc.ca (M. Salcudean).

0032-5910/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.powtec.2011.01.024

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r.com/ locate /powtec

http://dx.doi.org/10.1016/j.powtec.2011.01.024
mailto:msal@interchange.ubc.ca
http://dx.doi.org/10.1016/j.powtec.2011.01.024
http://www.sciencedirect.com/science/journal/00325910


Table 1 presents conservation equations for both phases. Eqs.
(T1.1–T1.4) are ensemble averaged [4] continuity and momentum
equations. In contrast to small scale experiments, in the industrial
reactors there are significant variations in temperature between the
incoming steam and the fluidized bed particles. Therefore, an assump-
tion of a constant total enthalpy used in [3] instead of the full energy
conservation equation is no longer applicable. Full energy equations for
both phases (Eqs. (T1.5, T1.6)) obtained with a similar averaging
procedure are implemented into the model instead. In writing the
equationsweassumed that theheat capacity cp is constant for eachof the
phases. While it is clearly the case for the particulate phase, the gaseous
phase, steam, does exhibit some variations of this parameter. However,
these variations for the temperatures encountered in the reactor
(200÷550 °C) are in the range of 10%. As this value falls within a
margin of the overall modeling errors, our assumption is acceptable. The
multiphase version of k-ε turbulence model for the primary phase
including a compressibility correction [5] and the interfacial energy
exchange (Eqs. (T1.7, T1.8)) is utilized in themodel. Eq. (T1.9) represents
the conservation of the granular temperature, which is a measure of the
fluctuating energy of the particulate phase. Finally, the spatial variation
of the particle sizes due to break up and convection are described with a
particle number density approach (Eq. (T1.10)). This approach requires
an assumption that the local particle size distribution can be represented
by the local average diameter. The particle number density, which is the
number of solid particles per unit volume, can be determined from the
particle diameter and volume fraction, n=6αs/πd3.

In order to close the equations listed in Table 1, a number of
constitutive equations are required. These equations are presented in
Table 2. As already mentioned, superheated steam behavior deviates
from an ideal gas equation of state. However, we still employ an ideal

gas equation (Eq. (T2.1)) because these deviations are relatively
minor when compared to the overall model uncertainty arising from
the very complex nature of the flow to be modeled. The drag model of
Gidaspow et al. [6] is implemented to calculate the interfacial drag
coefficient (Eq. (T2.2)). The approach for closing energy equations is
adopted from Schmidt and Renz [7]. The interfacial heat transfer
coefficient is obtained through the Nusselt number (Nu) correlation
proposed by Gunn [8] and presented in Eq. (T2.3). The gas effective
thermal conductivity expression (Eq. (T2.4)) is taken from Kuipers
et al. [9]. For the solid phase, the relation obtained by Hunt [10]
(Eq. (T2.5)) connects the solid effective thermal conductivity to the
random movement of particles. KTGF described in [11–13] is utilized
to evaluate the diffusion coefficient and the dissipation in the granular
temperature equation (Eqs. (T2.6, T2.7)). It is also used to calculate
the solid pressure (Eq. (T2.8)) and the shear and bulk viscosities
(Eqs. ( T2.9, T2.10)). An additional frictional viscosity is applicable
when the values of solid volume fraction are high (αsN0.5), and it is
evaluated by Eq. (T2.11) following [14]. Ma and Ahmadi's [15]
correlation for the radial distribution function (Eq. (T2.12)) is adopted
as it is applicable for a wide range of solid volume fractions. Instead of
solving a differential equation for the gas–solid turbulence correla-
tion, we used a simplified approach proposed by Simonin and He [16]
to relate it to the granular temperature (Eq. (T2.13)). Finally, the
particle breakage frequency needed in Eq. (T1.10) is calculated by
Eq. (T2.14) according to our model [3]. It was shown in [3] and also
can be inferred from an attrition propensity parameter proposed by
Ghadiri et al. [17] that the breakage frequency Cbr is an empirical
parameter that depends on the material of the particulate phase.

In all computations presented in this paper we utilized the code
that was previously developed by Nowak and Salcudean [18] and

Table 1
Conservation equations.

Gas continuity equation
∂
∂tαgρg + ∇⋅αgρgVg = 0

(T1.1)

Solid continuity equation
∂
∂tαsρs + ∇⋅αsρsVs = 0

(T1.2)

Gas momentum equation
∂
∂tαgρgVg + ∇⋅αgρgVgVg = ∇⋅τg−αg∇P + ρgg + β Vs−Vg

� �
where τg = αg μg + μ t

g

� �
∇Vg + ∇VT

g

� �
−2

3
I∇Vg

� �
−2

3
αgρgkgI

(T1.3)

Solid momentum equation

∂
∂tαsρsVs + ∇⋅αsρsVsVs = ∇⋅τs−αs∇P−∇Ps + ρsg + β Vg−Vs

� �
where τs = αs μs ∇Vs + ∇VT

s

� �
+ λs−

2
3
μs

� �
I∇Vs

� �
(T1.4)

Gas enthalpy equation
∂
∂tαgρgHg + ∇⋅αgρgVgHg = αg

∂p
∂t −∇⋅κg∇Tg + h Ts−Tg

� �
+ τg : ∇Vg

where Hg = cpgTg +
V2
g

2
+ k

(T1.5)

Solid enthalpy equation
∂
∂tαsρsHs + ∇⋅αsρsVsHs = αs

∂p
∂t −∇⋅κs∇Ts + h Tg−Ts

� �
where Hs=cpsTs

(T1.6)

Turbulent kinetic energy equation
∂
∂tαgρgk + ∇⋅αgρgVgk = ∇⋅ μg +

μ t
g

σk

 !
∇k + τg : ∇Vg−αgρgε−β 2k−qgs

� �
−2αgρgε

k
a2

where μ t
g = Cμρg

k2

1 +
2k
a2

� �
ε

(T1.7)

Turbulent dissipation equation

∂
∂tαgρgε + ∇⋅αgρgVgε = ∇⋅ μg +

μ t
g

σε

 !
∇ε +

ε
k

C1ετg : ∇Vg−C2εαgρgε−C3εβ 2k−qgs
� �� �

(T1.8)

Granular temperature equation
3
2

∂
∂tαsρsθ + ∇⋅αsρsθVs

� �
= −PsI + τsð Þ : ∇Vs + ∇⋅ kθ∇θð Þ−γ + βqgs−3βθ

(T1.9)

Particle number density equation
∂n
∂t + ∇⋅nVs = nfbr

(T1.10)
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