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This paper considers the behaviour of mono-disperse coarse glass particles in a pneumatic conveying
experiment which consists of a curved and straight rectangular duct. Thus, the flow situation comprises the
formation of a particle strand in the curved section as well as its dispersion in the subsequent straight
horizontal channel. Thereby, from a physical point of view the effects of inter-particle collisions, particle
rotation and wall roughness are of crucial importance.
Based on this experimental setup six numerical models for the granular phase are applied in order to picture
these physical phenomena. While the first set of three models – the (a) Lagrangian Discrete Phase (DP)
model, the (b) Discrete Element Method (DEM) and the (c) ‘standard’ Eulerian-granular (EUgran) model – is
readily available in commercial codes the remaining three models represent in-house developments. As a
first modification the standard DP model is enhanced by sub-models accounting for inter-particle collisions,
wall roughness and particle rotation in order to get an (d) enhanced Discrete Phase (DP+) model. Next, two
combinations between the Eulerian and Lagrangian models, the (e) Dense Discrete Phase Model (DDPM),
and a (f) Eulerian based hybrid model (EUgran+) are presented and discussed.
Thus, all in all six numerical models are evaluated by qualitatively checking the main flow pattern,
subsequently by a quantitative validation of dedicated profiles of particle velocity and concentration and
finally, by qualitatively comparing the computational effort of each numerical model. While all ‘out of the
box’ models fail in predicting even basic flow patterns the remaining enhanced models agree well with the
experimental results. Nevertheless, their required computational effort is significantly different.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Particle handling – processing, conveying, and separation – is of
crucial importance in process industry. Beside analytical consider-
ation, empirical correlations and experimental investigations, numer-
ical simulations have gained increasing importance in studying
applied particle laden flows. Regardless of themethod of investigation
it is mandatory to cover the dominant flow regime or the dominant
flow regimes of the process. The local particle concentration for
instance directly affects the importance of inter-particle collisions and
thus might define a basic requirement for any modelling attempt. On
the other hand the ratio between the individual particle's inertia and
its drag force determines whether the effect of turbulence on the
particle's trajectory is negligible or not.

In this paper a simple pneumatic conveying section is used as a
basis for a comparative analysis of different numerical modelling

concepts. Rather coarse mono-disperse particles of approximately
1 mm diameter are fed into a gas stream by a moderate feeding rate.
Thus, the resulting average conveying is rather dilute. Nevertheless, in
the curved section of the conveying duct a particle strand is formed
due to centrifugal forces that represent a significantly higher local
particle concentration. In the subsequent horizontal straight channel
this particle strand disperses again and the particles accelerate until
the normal dilute conveying regime is regained. Thus, any modelling
approach should cover the phenomenon of strand formation and
dispersion of coarse particles. In contrast to the experiments of Huber
and Sommerfeld [9] in our case a square channel is used in order to
facilitate adapting the channel's wall roughness by just placing
appropriate layers into the horizontal section. Therefore, the effect
of wall roughness or wall structure on the dispersion behaviour can be
studied in detail, too [11].

In principle, the numerical modelling approaches could be
organized in Lagrangian and Eulerian models. In the first model,
individual particles or representative parcels of particles are traced by
evaluating a local force balance at the actual position of the particle.
On their way through the computational domain the particles exert a
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force on the continuous gas phase that acts as a source term in the
momentum balance of the continuous gas phase [2]. In the second
approach the information of individual particles is somehow smeared
out and the multitude of particles is considered as an artificial particle
phase that can interpenetrate the continuous gas phase. Based on the
kinetic theory of rapid distortion inter-particle collisions go along
with an increase in the particle phase's granular temperature and
result in macroscopic properties like a granular viscosity or a granular
pressure (e.g. [8]).

Obviously, both main approaches have their pros and cons. While
within the Lagrangian framework it is difficult to address inter-
particle collisions it is quite hard to consider the effects of particle
rotation or wall roughness within the Eulerian approach. The
Lagrangian model has already been augmented by sub-models that
account for inter-particle collisions by defining virtual collisions
partners that are based on previously obtained particle statistics
[15,24]. In another approach the Lagrangian model tracks each
individual particle and resolves each collision by either a soft sphere
[4] or a hard sphere (e.g. [30]) collision sub-model. On the other side,
also the Eulerian particle model has been augmented by additional
equations that handle particle rotation in the cases of perfectly
smooth or perfectly rough particle (e.g. [21]).

Beside these twomain approaches and their individual expansions
hybrid models try to combine Lagrangian and Eulerian methods. This
coupling could be achieved either by a domain decompositionmethod
or by a concurrent simulation throughout the computational domain.
In the first case the Eulerian model might be applied to dense particle
regions since in that regime inter-particle collisions tend to be
dominant while the Lagrangian model could cover dilute flow
regimes. This domain decomposition concept has been proposed in
modelling snow avalanches [31], particle strands in cyclones [18] and
the particle behaviour in the vicinity of walls [17]. In the second
coupling approach the hybridmodel is either based on a Lagrangian or
on an Eulerian model throughout the domain. Nevertheless, individ-
ual terms in their basic set of equations are modelled by the help of
the very other approach. Thus, within a Lagrangian based hybrid
model the effect of individual inter-particle collisions could be
considered by a granular pressure force that could be deduced from
an Eulerian granular model [22,16,20]. An Eulerian based hybrid
model on the other hand could incorporate the effect of poly-
dispersity by additionally tracing passive Lagrangian particles [19]. In
just another hybrid approach the behaviour of small particles is
covered by an Eulerian model while large particles are traced in a
Lagrangian frame of reference (e.g. [1]).

In the next section this paper starts with a description of the
modelling concepts that are applied to the pneumatic conveying
experiment. Beside a set of three standard models an enhanced
Lagrangian model and two hybrid models are presented in some
detail. In Section 3 the experimental facility and the measurement
procedure is briefly sketched before in Section 4 numerical results are
presented in a comparative way.

1.1. Modelling particle behaviour

In the following sub-sections the individual particle models are
presented. Thereby, ‘standard’ models refer to models that are
provided by the commercial codes Fluent 6.3 [7] and EDEM 2.0 [6].
Those ‘out of the box’ models have been applied without any
adaptations. The remaining three enhanced models all tackle
additional physical phenomena like inter-particle collisions, particle
rotation or the effect of wall roughness. Thereby care is taken to apply
physically analogue sub-models in order to guarantee that the results
are comparable. All of the standard and enhancedmodels are based on
a turbulent gas flow that is modelled by the Navier–Stokes equations,
Eq. (1) in Table 1. Since the gas flow is strongly turbulent and

comprises dominant streamline curvatures a Reynolds Stress Model
(RSM) has been selected for the gas phase, Eqs. (2)–(4).

Before embarking with the description of the individual models a
general discussion on the influence of fluid turbulence on the particle
behaviour is needed. This interaction mechanism is characterized by
the particle Stokes number, which sets the particle relaxation time in
relation with some characteristic time scale of the gas turbulence,
St = τp

τg
, where τg = 2

9
k
ε, where τg = 2

9
k
ε can be related to the fluid

turbulent kinetic energy k and the turbulent dissipation rate ε (e.g.
[28]). The particle relaxation time is a measure for the time a particle
needs to respond to a change in gas velocity. If the relative particle

Reynolds number, Rep =
ρgdp

→ug−→upj j
μg

, is small the particle relaxation
time might be expressed as τp0=ρpdp2/18μg, which in our situation
represents a physical time of τp0=6.9 s. Anyhow, in the case of
coarse particles the particle Reynolds number might become large
and the particle relaxation time has to be adopted by τp = τ

p0

.
f
Rep
� �

where f(Rep)=1+0.15Rep0.687. Furthermore, since also the fluid

turbulent kinetic energy and the turbulent dissipation rate vary in
the computational domain also the typical particle Stokes number
might change along a particle's trajectory. If the particle Stokes
number is evaluated based on local quantities for fluid turbulence and
particle Reynolds number typical Stokes numbers account to
StPos.1, 2, 3=2600, 2900, 3250 at the measurement positions. These
values clearly indicate that in our case of coarse particles and
correspondingly large particle relaxation times, the influence of gas
turbulence on particle movement (i.e. particle strand formation and
dispersion) is very weak and can be neglected. As a consequence none
of the following models takes into account the influence of fluid
turbulence on the particle behaviour.

1.2. Standard Lagrangian model —DP

The standard Lagrangian DPmodel is based on a translational force
balance, Eq. (5) in Table 2. In our case the particle is accelerated only
by drag force and by gravitation. Since in our case of coarse particles
with ρp≫ρg additional forces like the Saffman, Basset or virtual mass
force are negligible and fadd=0. Furthermore, in the standard DP
model particle rotation is not considered and thus, Magnus force is
neglected, too (Table 3).

Although the translational momentum balance is formulated for
an individual sphere, in the standard DP model each particle
represents a parcel of particles. In the two-way coupling mode of

Table 1
Mass and momentum balance as well as Reynolds Stress turbulence model of the
continuous gas phase; further details can be found in Fluent (2006) and literature cited
therein.

∂
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Table 2
Translational and angular momentum balances of the Lagrangian models.

d
dt

up =
18μg
ρpd2p

CDRep
24

ug−up
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+ g + fp;add;

d
dt

xp = up ;

(5)

d
dtωp = tp;gasþ tp;add (6)
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