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Conventional design of circulating fluidized beds requires the knowledge of dispersion and mass transfer
coefficients, expressed in dimensionless forms as Sherwood numbers. However, these are known to vary by
five or more orders of magnitude. Furthermore, the Sherwood numbers for fine particles reported in the
literature are several orders of magnitude lower than the Sherwood number of two for diffusion to a single
particle. We have shown that by replacing the particle diameter in the conventional Sherwood number with
cluster or bubble diameter, the modified Sherwood number is again of the order of two.
We have also shown that the kinetic theory based computational fluid dynamics codes correctly compute the
dispersion and mass transfer coefficients. Hence, the kinetic theory based computational fluid dynamics
codes can be used for fluidized bed reactor design without any such inputs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Conventional design of circulating fluidized beds, such as gasifiers
[33], requires the knowledge of dispersion and mass transfer
coefficients or Sherwood numbers. However, these are known to
vary by five or more orders of magnitude [1].

We have recently shown that the particle and the gas axial and
radial dispersion coefficients [18,19], and the mass transfer coeffi-
cients [3,4] can be computed using the kinetic theory based
multiphase model, which is available in a commercial FLUENT code,
the publically available MFIX [26] and in the IIT code [14].

2. Hydrodynamic model

The hydrodynamic model for the multiphase flow is based on the
generalization of Navier–Stokes equations. The model numerically
solved the set of governing conservation equations, mass, momentum,
energy and species mass conservation, using the kinetic theory of
granular flow [13]. The dense phase drag law was based on the Ergun
equation, and the dilute drag law was a modification of Wen and Yu
drag law [31,32]. However, tomodel the turbulent fluidization regime,
the drag law was modified using the energy minimization principle
[32]. Table 1 summarizes the kinetic theory based Hydrodynamic
model A used in FLUENT. In the IIT code, the Hydrodynamic model B
was used [16,17].

Fig. 1 shows that the dilute and the dense solid volume fractions of
fluid cracking catalyst (FCC) particles can be computed using the
modified drag model. We have conducted a similar study to that of
Wei et al. [29] in the IIT two-story riser shown in Fig. 2. To obtain high
fluxes, we have fluidized the downcomer. Fig. 3 shows our
experimental data for FCC particles plotted on Matsen's phase
diagram. Matsen's model is essentially the drift flux model reviewed
by Gidaspow [13]. Recently, Gao et al. [12] also computed the two
different volume fractions in the turbulent flow regime using the
kinetic theory model in FLUENT, and compared the computations to
experiments.

Fig. 4 shows that the model is able to resolve the spectral
distribution of turbulence, beginning with the low frequency gravity
wave down to the high frequency Kolmogorov regime.

We have also simulated the flow of cork particles in the NETL riser
shown in Fig. 5. Fig. 6 shows that the pressure profile in the NETL riser
with flow of cork is almost identical to the pressure distribution in the
PRSI riser for flow of FCC particles when scaled with the density of the
particles.

3. Computation of dispersion coefficients

Fig. 7 shows a comparison of the computed axial gas dispersion
coefficient to literature correlations. Fig. 8 shows a similar computa-
tion for the radial gas dispersion coefficients. The radial gas dispersion
coefficient is several orders of magnitude lower than the axial
dispersion coefficient, as is well known in literature. Fig. 9 shows a
comparison of the measured NETL cork axial solid dispersion
coefficients to the CFD computation and the literature values. Fig. 10
shows a comparison of the computed radial solid dispersion
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coefficients for the cork particles to related measurements in the
literature. The gas and the particle dispersion coefficients are close to
each other. They are all local values. They vary with axial and radial
positions. We have shown that the kinetic theory based hydrody-
namic model is capable of computing all the dispersion coefficients
with a reasonable comparison to the literature reported in the last half
a century.

4. Measurement of dispersion coefficients in the IIT
two-dimensional CFB

4.1. Experimental setup

A two-dimensional circulating fluidized bed (CFB) was con-
structed and modified at IIT, for the measurements of dispersion
andmass transfer coefficients, with partial financial support fromUOP
and the U.S. Department of Energy.

4.2. Schematic diagram

Fig. 11(A) shows the schematic diagram of the two-dimensional
circulating fluidized bed (CFB) at IIT. The inner walls of the riser
section of the fluidized bed were constructed of 0.5 inch thick glass
sheets to avoid sticking of FCC particles to the walls, due to
electrostatics caused by abrasion. The inside dimensions of the
fluidized bed were 2 inch depth by 12 inch width by 50.5 inch height.
The glass section was enclosed within a 0.5 inch thick acrylic sheet
framework. The downcomer section of the fluidized bed was
fabricated of 0.5 inch thick acrylic sheets, with the inside dimensions
as 2 inch depth by 12 inch width by 55 inch height. Fine 304 L

Table 1
Kinetic theory based hydrodynamic model.

Conservation of mass or continuity equations
1. Gas phase:

∂ ρgεgð Þ
∂t + ∇⋅ ρgεgvg

� �
= 0

2. Solid phase:
∂ ρsεsð Þ

∂t + ∇⋅ ρsεsvsð Þ = 0

Conservation of momentum equations
1. Gas phase

∂ ρgεgvgð Þ
∂t + ∇⋅ ρgεgvgvg

� �
= −εg∇P + ∇⋅ ̅̅τg−βA vg−vs

� �
+ εgρgg +ṁg ṽg

2. Solid phase
∂ ρsεsvsð Þ

∂t + ∇⋅ ρsεsvsvsð Þ = −εs∇P−∇Ps + ∇⋅ ̅̅τs + βA vg−vs
� �

+ εs ρs−ρg
� �

g +ṁs ṽs

(3)

Conservation of fluctuating energy equation for particles (θ=1/3bC2N)

3
2

∂
∂t εsρsθð Þ + ∇⋅ εsρsvsθð Þ
h i

= −∇Ps
̅̅I + ̅̅τs

� �
: ∇vs + ∇⋅ κs∇θð Þ−γs

Conservation of energy equations
1. Gas phase

∂
∂t εgρghg
� �

+ ∇ : εgρgvghg
� �

= −εg
∂pg
∂t + τg : ∇ :vg + Sg + Q sg

with, hg = ∫cpgdTg
2. Solid phase

∂
∂t εsρshsð Þ + ∇ : εsρsvshsð Þ = −εs ∂ps

∂t + τs : ∇ :vs + Ss + Qgs

with, hs = ∫cpsdTs

Conservation of species equations (I=O3, O2 or N2 (air))
∂
∂t εgρgyi
� �

+ ∇ : εgρgvgyi
� �

= ri

Constitutive equations
1). Definitions

εg + εs = 1
2). Gas pressure

Pg = ρgRTg
3). Stress tensor (i=gas or solid)

̅̅τi = 2μiεi
̅̅Di + εi λi− 2

3 μi
� �

tr ̅̅Di

� �
I

where,
̅̅Di = 1

2 ∇vi + ∇við ÞT
h i

4). Solid phase pressure
Ps = ρsεsθ 1 + 2 1 + eð Þg0εs½ �

5). Solid phase shear viscosity

μs =
10ρsdp

ffiffiffiffi
πθ

p
96 1 + eð Þg0εs 1 + 4

5 1 + eð Þg0εs
� �2 + 4

5 εsρsdpg0 1 + eð Þ
ffiffiffi
θ
π

r
6). Solid phase bulk viscosity

λs = 4
3 εsρsdsg0 1 + eð Þ

ffiffiffi
θ
π

r
where, g0 is the radial distribution function and μsdil is the particle phase
dilute viscosity.

g0 = 1− εs
εs;max

	 
1=3
" #−1

7). Collisional dissipation of solid fluctuation energy

γs = 3 1−e2
� �

ε2s ρsg0θ
4
ds

ffiffiffi
θ
π

r
−∇⋅vs

 !

8). Granular conductivity of fluctuating energy (q=−k∇θ)

κs =
150ρsdp

ffiffiffiffi
πθ

p
384 1 + eð Þg0 1 + 6

5 1 + eð Þg0εs
� �2 + 2ε2s ρsdpg0 1 + eð Þ

ffiffiffi
θ
π

r
9). Gas–solid drag coefficient

Normal drag:
for εgb0.8 (based on the Ergun equation)

βA = 150 ε2s μg
εgd2p

+ 1:75 ρgεs
dp

jvg−vsj
for εg≥0:8 (based on the empirical correlation)

βA = 3
4Cd

ρgεsεg jvg−vs j
dp

ε−2:65
g

EMMS drag
for εgb0.74

βA = 150 ε2s μg
εgd2p

+ 1:75 ρgεs
dp

jvg−vsj
for εg≥0.74

βA = 3
4Cd

ρgεsεg jυg−υs j
dp

ω εg
� �

when, 0:74≤εg≤0:82; ω εg
� �

= −0:5760 + 0:0214
4 εg−0:7463ð Þ2 + 0:0044

when, 0:82≤εg≤0:97; ω εg
� �

= −0:0101 + 0:0038
4 εg−0:7789ð Þ2 + 0:0040

when, εg N 0:97; ω εg
� �

= −31:8295 + 32:8295εg
with,

Cd =
24
Rep

1 + 0:15Re0:697p

h i
forRepb1000

Cd = 0:44 forRep N 1000

Rep = εgρgdp jvg−vs j
μg

(continued on next page)

Conservation of mass or continuity equations
Boundary conditions for particle phase [58]
1). Velocity

vs;w = − 6μsεs;maxffiffi
3

p
πϕρsεsg0

ffiffi
θ

p ∂vs;w
∂n

2). Granular Temperature

θw = − κsθ
γs;w

∂θw
∂n +

ffiffi
3

p
πϕρsεsv2s;slipg0θ

3 = 2

6εs;maxγs;w
where γs;w = −

ffiffi
3

p
π 1−e2wð Þεsρsg0θ3 = 2

4εs;max

Boundary conditions for gas phase
vx;w = vy;w = 0

Fig. 1. Computed solid volume fraction structure in the Wei et al. [29] riser, showing
turbulent flow regime [16].

Table 1 (continued)

41M. Kashyap, D. Gidaspow / Powder Technology 203 (2010) 40–56



Download English Version:

https://daneshyari.com/en/article/237804

Download Persian Version:

https://daneshyari.com/article/237804

Daneshyari.com

https://daneshyari.com/en/article/237804
https://daneshyari.com/article/237804
https://daneshyari.com

