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We investigate the water distribution and the link between suction and water content in granular media.
Firstly, we examine the effect of suction on the shape and the volume of the liquid bridge by four different
methods. Method I is based on the local expression of the capillary force coupled with the gorge method and
Method II is based on the Laplace law. These two methods use the toroidal approximation. Methods III and IV
are based on the integration of the differential equation that defines the liquid bridge shape (established
from the Laplace law). This local behaviour is then used in a discrete element study of a sample composed of
several thousands of grains. We focus our study on the pendular state. A liquid film around the grains
involving the continuity of the liquid phase is assumed. The water distribution and the water content
associated with a given suction are calculated. Then retention curves of the granular media are built. A
parametric study is made to bring to light the effect of macroscopic parameters (grain-size distribution) and
physical parameters (liquid/air surface tension and contact angle) on the water retention curve. Finally,
numerical data are compared to experimental results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A realistic description of the physical phenomena at the grain scale
is necessary to understand better the overall behaviour of a granular
material. The macroscopic behaviour can then be predicted by
including such local interactions in numerical simulations by the
discrete element method (DEM) [1]. This numerical analysis tech-
nique, based on the discretization of the domain into a set of particles,
uses basic constitutive laws to define inter-particle contacts and
interactions between grains in order to provide the macroscopic
behaviour of the entire sample. This method is very useful and can
even predict quantitatively the macroscopic behaviour of a granular
material [2,3]. In this paper, we focus on the capillary interaction at
the local scale with the study of the relation between the suction and
the properties of a liquid bridge.

Water in granular media and powders can strongly affect their
texture and rheology. Due to their fine grain-size distribution and
high density, these media can have large hygroscopic domain (water
forms thin adsorption layers on the grain surface) and pendular
domain (water form liquid bridges between grains in contact or close
to be in contact). In the pendular domain, the water distribution
creates attractive forces between particles, due to the surface tension
and the pressure difference Δp=pa−pw between the air pressure
(pa) and the liquid pressure (pw) across the liquid bridge interface.
This difference is called capillary pressure or suction s at the local

scale. Capillary forces are sufficient to ensure the mechanical stability
of a soil even without external stress confinement (sand castles).
Former works on capillary forces in a granular media—using DEM—

underlined the effect of capillary interactions on the macroscopic
cohesion [2,3]. Two points have been underlined: the number of
liquid bridges per grain is a key point to ensure macroscopic strength
[3], whereas the liquid bridge volume doesn't have strong effect on
strength. In these studies, the liquid bridge volume was obtained
using geometrical configuration such as grain radius and inter-particle
distance.

Polydispersity is a generic feature of granular materials. Common-
ly, granular media (soils and powders) involve a broad range of
particle sizes produced by fragmentation and aggregation processes.
The pore space characteristics of granular media directly depend on
the polydispersity. It has been shown [4] that the macroscopic
cohesion of a wet granular material increases with polydispersity and
that the water retention curve depends on the polydispersity [5]
(slope of the water retention curve and air entry value). Some authors
have yet calculated water retention curves of monodisperse granular
media [6,7]. Recently, water retention of polydisperse granular media
was calculated [8]—coupling DEM and an interpolation scheme on a
set of discrete solutions of the Laplace law to calculate the water
content for a given suction—but without comparison to real samples.

Literature provides few experimental data on water retention
curves in model media. An original experimental device to study this
point is made. The water retention curves obtained for two different
samples (different grain-size distribution) of spherical glass beads are
presented.
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The following study presents 4 approaches to have an accurate
estimation of the liquid bridge volume between the grains as a
function of the suction. Then, the relation between suction and water
content also called water retention curve is studied numerically. The
purpose of this paper is to give a numerical approach to model water
retention curves for polydisperse granular media and to compare the
results with experimental water retention curves.

2. Water retention at the local scale

We study the liquid bridge between two spherical grains. We call
“grain-pair” the assembly of two grains linked by a liquid bridge. For
given geometrical characteristics (grain radius and inter-particle
distance) of the grain-pair, and given physical characteristics (contact
angles and liquid/air surface tensions), we examine the effect of
suction on the shape and the liquid bridge volume by four different
methods. Methods I and II are based on the toroidal approximation, in
which the meridional profile of the liquid is assumed to be an arc of
circle (Fig. 1). This approximation doesn't respect the Laplace law in
the whole liquid bridge since the liquid pressure is not constant in
every part of the liquid bridge (the outer radius is constant).
Nevertheless, the toroidal approximation leads to good results
comparing with experimental data [9]. Methods III and IV are based
on the integration of the differential equation that defines the liquid
bridge shape. The liquid bridge volume is given by:

V = π∫
xc2

xc1
y2 xð Þdx−V1−V2 ð1Þ

y(x) defines the meridional profile of the liquid which is an arc of
circle in the toroidal approximation. For Method IIIs and IV, it is the
solution of the differential equation (Eq. (6)) that defines the shape of
the liquid bridge. xc1 and xc2 are respectively the x-positions of the
contact line with grains 1 and 2. V1 and V2 are respectively the
dimensionless volumes of portions of grains 1 and 2 which are
recovered by the liquid bridge.

2.1. Method I: use of the Laplace law

The Laplace lawpostulates that the pressure differenceΔp=pa−pw
(suction s) between the gas phase (pa) and the liquid phase (pw) across
the interface between two fluids is equal to the product of the surface
tension σ and the mean curvature of the liquid bridge C = 1

ρint
+ 1

ρext
,

where ρint and ρext are the algebraic curvature radii of the surface.
ρint=−h and ρext=ρ because the suction is calculated at the center of
the meniscus and the liquid bridge shape presents inversed curvature.
So the Laplace expression is defined by:

Δp = s = σ
1
ρ
−1

h

� �
ð2Þ

ρ and h are functions of δ1,θ,R1,R2 and D. It is thus possible to find
the filling angle δ1 for given geometrical configuration and suction and
then to calculate the appropriate liquid bridge volume using Eq. (1).

2.2. Method II: local expression of the capillary force and the “gorge
method”

The capillary force Fcap due to the liquid bridge is directly linked to
its geometry. Using the “gorge method” [10], it is assumed that the
capillary force depends on the contribution of the surface tension σ
and the suction s. The capillary force is calculated at the gorge of the
liquid bridge and its expression is given by:

Fcap = 2πhσ + πh2s: ð3Þ

Using dimensionless numbers F�cap = Fcap
2πσR2

and h� = h
R2
, it is

possible to express the suction s as:

s = 2
F�cap−h�

� �
σ

h�ð Þ2R2
: ð4Þ

The relation between the capillary force and configuration of the
grain-pair is described by a system of coupled non-linear equations.
This system is numerically solved for several configurations of the
grain-pair. An appropriate fitting form for this set of numerical
solutions is [2]:

F
�
cap =

ffiffiffi
r

p
2

c + exp aD
�
+ b

� �� �
: ð5Þ

Where D
� = D

R2
and r = R1

R2
.

The coefficients a,b and c are functions of the liquid bridge volume
V, the contact angle θ and R2. The proposed fitting form (Eq. (5)) is
consistent with experimental results reported both by Willet et al.
[11] and Soulié et al. [2]. Using Eqs. (1), (4), (5) and geometrical
considerations, the calculation of the liquid bridge volume V is done
for a given suction.

2.3. Methods III and IV: integration of the differential equation

The shape of the liquid bridge (Fig. 2) is described by a differential
equation [12]:

Hy�ðx�Þ + σ
1 + ẏ�

2

ðx�Þ−y�ðx�Þy::� x�
� �

1 + ẏ�
2

ðx�Þ
� �3

2

= 0: ð6Þ

Where x� = x
R2
, y� = y

R2
and H = sR2

σ
.

This equation can be established from the Laplace law. Using the
boundary conditions at the gorge as well as at the contact line, we
numerically solve Eq. (6) looking for a polynomial solution (Method
III) or using the numerical method based on a trapezoidal rule1

(Method IV). The polynomial approximation is only composed of pair
powers. Then, it is possible to calculate the liquid bridge volume V for
given suction s, geometrical and physical parameters (R1, R2, D, σ, θ).

2.4. Result of the local study

For given R1,R2,D,σ, θ and s, it is possible to determine the volume
of the liquid bridge. Fig. 3 presents the relation between the liquid
bridge volume and the inter-particle distance for given suctions using
the four methods. Method IV, which gives the more exact solution,Fig. 1. Geometrical model of the toroidal approximation of liquid bridge between two

grains of different sizes: ρ is the liquid bridge outer radius, h is the gorge radius, D is the
inter-particle distance, δ1 and δ2 are the filling angles, θ is the contact angle and R1,R2
the grain radii with R1≤R2. 1 Function ode23t in Matlab in this case.
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