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The discrete element method (DEM), based on a soft-sphere approach, is commonly used to simulate
powder compaction. With these simulations a new macroscopic constitutive relation can be formulated. It is
able to de-scribe accurately the constitutive material of powders during the cold compaction process.
However, the force-law used in the classical DEM formulation does not reproduce correctly the stress
evolution during the high density compaction of powder. To overcome this limitation at a relative density of
about 0.85, the high density model is used. This contact model can reproduce incompressibility effects in

granular media by implementing the local solid fraction into the DEM software, using Voronoi cells. The first
DEM simulations using the open-source YADE software show a fairly good agreement with the multi-particle
finite element simulations and experimental results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Powder metallurgy has long been an attractive process technology
for both advanced and conventional materials. In a forming operation,
powder is consolidated into a desired shape, normally by applying
pressure. After forming, the green body (i.e., the compacted body) is
sintered so that the mechanical resistance of the final component is
effective [2]. Using powder compaction can save both time and money
in the manufacture of mechanical parts in serial production. One of
the major advantages is that near net shape parts produced by this
process need little or no machining. Another significant advantage is
the possibility to design the material properties by mixing different
powder materials so that the final product achieves a specifically
desired mechanical behavior. This results in a very high density (i.e.,
compact density greater than 0.9) conducive to forming a more
homogeneous material suitable for high strength applications.

But in the powder compaction process, plasticity and elasticity
phenomena, internal friction of porous medium and frictional effects
between the die walls may induce inhomogeneous distributions of
density and residual stress [3]. As a consequence, cracks appear into
the compacted zone during the pressing process and the mechanical
behavior of that part is difficult to predict [16]. To understand the
complicated behavior of the powders, industrials have performed
expensive trial and error procedures. With this in mind, numerical
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methods can be considered as a cheap and easy solution to help the
prediction of the product properties, but the two numerical approaches
known based on the finite element method (FEM) [15,21] and the
discrete element method (DEM) [7,8] reproduce these phenomena with
some difficulties. These obstacles are mainly due to the nonlinear
material behavior during the pressing step [6].

Nevertheless, understanding and predicting the mechanical
behavior of the final component can be done by the micro-mechanic
simulation with adequate phenomenological models. These models
may mimic the compaction process [9], because the DEM can give
interesting insight on the different physical phenomena present
during the early stage of powder compaction [16,22].

In this paper, we use a new micro-mechanic model to perform
discrete numerical simulations of powder compaction up to a density
equal to 0.95. In Section 2, we present the existing and new discrete
models which are developed to simulate the powder process. Then in
Section 3, the simulations of isostatic and die compaction of random
packings are performed with both the existing and the new discrete
models. The results are then compared to experimental results or the
multi-particle finite element method (MPFEM) simulations [4,17].

2. Discrete models

In DEM, the motion of each particle is resolved by using an explicit
integration method from Newton's second law [20]. The force and
moment that act on each particle result from the interaction forces
with their neighboring particles and these forces are numerically
computed by means of a force-law (i.e. an explicit relation between
the force components and the local parameters). The DEM can easily
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simulate complex constitutive mechanical behaviors of granular
materials with force-laws which integrate physical parameters, due
to the discrete character of the sample. In this section, we present the
force-laws commonly used to model the powder compaction and we
introduce a new contact model (so called high density model)
developed to simulate the compaction up to a high density value. Only
material parameters are required for these models and no calibration
is needed.

2.1. Existing models

In the simulations of compaction based on DEM, the powder is
often represented by elastic-plastic spheres. The elastic part of the
contact force is generally given by the Hertz contact law that
expresses the normal elastic force Fjj between two spheres i and j as
a function of their overlap h;;. This force-law reads:
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where R;f:( RiR;)/(R; +R;) is the reduced radius of the particle i and j,
E; and E; are the Young's moduli of their constitutive materials, and v
and v; are their Poisson coefficients. During compaction, particles in
contact deform irreversibly and thus the plastic deformation of the
constitutive material of the particles must be taken into account. The
plastic force-law of Stordkers is generally used for this purpose. In the
limiting case of a rate-independent material, it is based on a rigid-
plastic Von Mises-type material with strain-hardening defined as:
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where o and e are respectively the uniaxial Von Mises equivalent
stress and strain, op and m are material constants. The force-law
derived by Stordkers [19] gives the normal plastic force Fijp between
the particles i and j as a function of the plastic parameters op and m of
the particles:
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where c(m) = V/1.43e7" is related to the area of the contact zone.
This plastic force-law has been derived from finite element analyses
and Hill's theory on the indentation of a rigid sphere with a
deformable plane [11].

Some authors have used Stordkers's model (see Eq. (3)) coupled
with the Hertz contact (see Eq. (1)) to perform discrete element
simulations of powder compaction [5]. Nevertheless, this approach
is limited in density, because it assumes the mechanical and
geometrical independence of the contacts. Hence particles are
considered to have only local deformation in the contact zones
applied. These are small compared to the particles' sizes, and far
from each other, such that there is no influence of the neighboring
contacts. In theory, this assumption limits the model validity to the
cases where interferences between the contacts are negligible [18],
but it is generally accepted that the model is valid up to a relative
density (i.e. the ratio of the volumetric mass of the powder relative
to the volumetric mass of the material of its particles) of about 0.85.
The model presented in the following overcomes this limitation by
taking into account the contact interferences by means of a
definition of the local solid fraction.

2.2. High density model
The high density compaction analysis must absolutely account

for the influence on each contact force of all the contacts around the
particles. In the proposed model, this influence of these neighboring

contacts are considered in an indirect way by using the concept of
Voronoi cell as suggested by Arzt [1]. When a weighted 3D Voronoi
partition of the packing is performed, the sum of all cell volumes
correspond to the packing volume and each powder particle
(initially spherical) are surrounded by a Voronoi cell that contains
its own solid fraction (see Fig. 1). It is thus easy to define from the
weighted Voronoi partition, a local solid fraction associated with a
particle i:
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where V; is the volume of the Voronoi cell surrounding the particle i. It
is interesting to note here that p; = 1 means that the volume of the cell is
completely filled by the material originally contained in the particle i.

To derive a force-law for the discrete element simulation of high
density compaction, Harthong et al. [10] introduced a solid fraction
pij defined at the contact level between particles i and j. In our
implementation and in a first approximation, we arbitrarily defined
this parameter as the average solid fraction of the adjacent cells i
and j:

P = %(Pi + pj)- (5)

From finite element simulations of isostatic compaction of a cubic
unit cell containing one spherical particle (see Fig. 2), Harthong et al.
attempt to identify a force-law able to reflect the elastoplastic flow of
the particles. The initial solid fraction of the unit cell was py=0.52.
The high density force-law gives the normal force F; between the
particles i and j as a function of the parameters 0, and m of the
particles. It has been formulated in the case where both spheres are
identical, with the same radius R:
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In this relation, the stiffness S; depends both on material and
geometric parameters:
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Fig. 1. Packing of 4000 spheres represented with the associated Voronoi cells.
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