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Non-linear population balance models (PBMs), which have been recently introduced due to the limitations of
the classical linear time-invariant (LTINV) model, account for multi-particle interactions and thus are capable
of predicting many types of complex non-first order breakage kinetics during size reduction operations. No
attempt has been made in the literature to estimate the non-linear model parameters by fitting the model to
experimental data and to discriminate various models based on statistical analysis. In this study, a fully
numerical back-calculation method was developed in the Matlab environment to determine the model
parameters of the non-linear PBM. Not only does the back-calculation method identify the parameters of
complicated non-linear PBMs, but also it gives the goodness of fit and certainty of the parameters. The
performance of the back-calculation method was first assessed on computer-generated batch milling data
with and without random error. The back-calculation method was then applied to experimental batch milling
data exhibiting non-first order effects using both the LTINV model and two separate non-linear models. The
back-calculation method was able to correctly determine the model parameters of relatively small sets of
batch milling data with random errors. Applied to experimental batch milling data, the back-calculation
method with a two-parameter non-linear model yielded parameters with reasonable certainty and accurately
predicted the slowing-down phenomenon during dry batch milling. This study encourages experimenters to
use advanced non-linear population balance models along with the back-calculation method toward
estimating the breakage rate and distribution parameters from dense batch milling data sets.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and mathematical formulation

Population balance models (PBMs) as mathematical description of
size reductionhavebeenusedextensively in literature [1–6]. Early PBMs
for milling describe size reduction as a first-order rate process as
developed by Sedlatschek and Bass [7]. Their first-order breakage
hypothesis simply stated that the disappearance of particles of a given
size due to breakage is proportional to theweight of particles of that size
present. Later, concepts of breakage distribution and probability of
selection-for-breakage [8,9] were included by Broadbent and Callcott
[10–13], but they treated particle breakage as occurring in stages. In
order to apply the PBM to time-continuous milling processes, Gaudin
and Meloy [14] derived the time- and size-continuous mass density
form of the equation for a well-mixed batch milling process. More
commonly, the time-continuous size-discrete form seen in Eq. (1) is
preferred as experimental data is inevitably in discrete form [2].

dMi tð Þ
dt

= −SiMi tð Þ + ∑
i−1

j=1
bijSjMj tð Þ

N≥ i≥ j≥1 withMi 0ð Þ = Mini

ð1Þ

In Eq. (1), i and j are the size-class indices and extend from size-
class 1 containing the coarsest particles to size class N containing the
finest particles usually in a geometric progression. Mi represents the
mass fraction of particles in size-class i. Si is the specific breakage rate
parameter and bij is the breakage distribution parameter, which
describes the distribution of particles formed when a particle of size
class j is broken. This equation is also known as the linear time-
invariant (LTINV) model because the specific breakage rate does not
vary with time and its discretized value is only dependent on particle
size of given size class. The following constraints also apply to Eq. (1)
due to the conservation of mass:

SN = 0; ∑
N

i= j + 1
bij = 1; bii = 0: ð2Þ

Population balancemodels have the ability to simulate the evolution
of the particle size distribution of a milling process, but also to elucidate
the breakage mechanisms (e.g. fracture, cleavage, attrition) [6,15–17].
Numerous methods to determine Si and bij from experimental milling
data for the LTINV model have been proposed using both direct
measurements and back-calculation [18–24]. The so-called “direct
measurement method” demands tedious breakage experiments on
numerous mono-sized feeds to determine the parameters without
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resorting to complex non-linear optimization methods. Austin and
Bhatia [18] outlined the experimental procedure for determining the
breakage rate parameter andbreakage distribution parameter assuming
first-order breakage. Austin and Luckie [19] also detailed multiple
methods, known as the BI, BII, and BIII methods, to determine the
breakage distribution parameters. Aside from obvious complications of
these methods such as time-consuming preparation of numerous
mono-sized feeds, they also require certain assumptions such as
negligible re-breakage of particles which may cause error in the
calculation. Back-calculation, a technique which calculates the model
parameters that best fit the model to the experimental data, is also
widely employed and has significant advantages over the direct
measurements. It allows the milling of a natural-sized feed instead of
multiple mono-sized feeds and reduces the need for laborious
preparation of material. Both linear [22] and non-linear [21,23]
optimization techniques have been used with either Reid's analytical
solution [25] to the batch milling equation or other approximate
solutions [26] to back-calculate the model parameters.

Despite the varying success of the abovemethods and application of
the LTINVmodel, non-random deviation between experimental milling
data and modeled predictions of Eq. (1) were noticed and became a
source of some criticism [4,27–29]. Suchdeviations becamepronounced
at long milling times or when the presence of fines became significant.
Austin and Bagga [4] investigated such deviation and observed that
the specific rate of breakage decreased as fines accumulated and deter-
mined that the source of non-first order effects originated from a
cushioning action provided by fine particles. To account for this, Austin
andBagga [4] andAustin et al. [27] introduced a time-dependence to the
specific breakage rate parameter. They subsequently assumed that the
specific rates of breakage for all particle sizes varied in the sameway as
the milling environment changed according to an acceleration–
deceleration function κ(t). They solved the resulting linear time-variant
(LTVAR) model by invoking the concept of a false time or equivalent
first-order grind time, θ, as seen in Eq. (3).

dMi θð Þ
dθ

= −Si 0ð ÞMi θð Þ + ∑
i−1

j=1
bijSj 0ð ÞMj θð Þ

N≥ i≥ j≥1 with Mi 0ð Þ = Mini

dθ = κ tð Þdt with θ 0ð Þ = 0

ð3Þ

False time may be correlated to true grind time through a series of
mono-sized feed milling experiments. The acceleration–deceleration
function may be determined in the same manner. While this method
can correctly predict a decrease (or increase) in specific breakage rate as
milling progresses, it still lacked the ability to account for the source of
the non-first order effects (i.e. cushioning of coarse particles by fine
particles) in an explicit way. Similarly, other time-variant models to
account for non-first order effects based on Kapur's method [22] do not
either [28,30].

Bilgili and Scarlett [31] introduced a population balance frame-
work to mathematically explain non-first order effects arising from
multi-particle interactions for rate processes. In their model, the
specific breakage rate is decomposed into an apparent breakage rate
and a population dependent functional where the functional describes
different types of non-first order breakage kinetics. Their non-linear
population balance model in Eq. (4) is shown in size-discrete form.

dMi tð Þ
dt

= −kiFi ∑
N

q=1
PiqMq tð Þ

" #
Mi tð Þ + ∑

i−1

j=1
bijkjFj ∑

N

q=1
PjqMq tð Þ

" #
Mj tð Þ

N≥ i≥ j≥1 withMi 0ð Þ = Mini

ð4Þ

In Eq. (4), ki is the apparent specific breakage rate parameter, Fi is a
functional of the weighted distribution of the mass fraction where Piq

expresses the contribution of the generic size q to the disappearance
rate of particles of size i due to multi-particle interactions, and all
other terms are identical to Eq. (1). The following constraints also
apply to Eq. (4):

ki≥0;kN = 0; ∑
N

i= j + 1
bij = 1; bii = 0

Fi½ �≥0; Fi½ �→1as ∀Mq q≠i; tð Þ→0:

ð5Þ

The choice of functional, as discussed by Bilgili and Scarlett [31] and
Bilgili et al. [32], is partly empirical and depends on mill type, design
variables, operation mode, operating variables, andmaterial properties.
However, it is well-established that short-time milling of a mono-sized
feed is first-order [1]. It has also been shown in many milling studies
[4,30,33,34] that non-first order kinetics is significantly contributed by
multi-particle interactions. In other words, the breakage of a particle is
affected by the surrounding population. Specifically, for dry milling in a
ball mill, finer particles exert a “cushioning action” on the coarser
particles, thus reducing the specific breakage rate of the coarserparticles
[4]. The functional chosen (e.g. F≡exp[],(1+[]−1), etc.) and the
weighting function P must accurately reflect these considerations and
physical interactions. Finally, whatever functional chosen, it should
explain Type I and Types II or III deviations from the LTINV model [31],
while yielding parameters with higher statistical certainty than the
LTINV model, as being demonstrated in this paper. Therefore, if a
functional is chosen completely arbitrarily without taking into account
any of the above considerations, the non-linearmodel will probably fail,
resulting in inferior predictions and parameters as comparedwith those
of the LTINV model.

Numerical simulations using a simplified version of Eq. (4), known
as Model B and shown in Eq. (6) in the sequel, were performed by
Bilgili and Scarlett [31] and Bilgili et al. [32]. In their work, two specific
forms of the functional (Eqs. (7) and (11) in this study) were
considered and found to successfully describe different types of non-
linear kinetics. Furthermore, they successfully predicted the three
types of milling behavior observed in literature including the decrease
in specific breakage rate observed by Austin [27] that could not be
explained by the LTINV model, i.e., Eq. (1). Further novelty of their
framework extends from the fact that the non-linearmodel reduces to
the linear model in the absence of multi-particle influence or in other
words when F[ ]→1. Due to the ability of this non-linear population
balance model to encompass many different types of particle
breakage kinetics phenomenologically, we argue that it can lead to
better design, control, and optimization of size reduction processes.

Because no analytical solution exists for the non-linear model,
calculation of the breakage rate parameters, breakage distribution
parameters, and the non-linear functional parameters remains a
formidable challenge. Determining the model parameters is of upmost
importance in order to use the PBM for process simulation, design,
scaling, control, and optimization [1–3,15,35]. Having estimated the
model parameters for a given set of operating conditions andmaterial in
amill, one canpredict the temporal evolutionof the sizedistributionand
final product size distribution for any given feed (initial) particle size
distribution. This is especially important when non-first-order effects
are significant, which result in a pronounced impact of the initial
condition on the temporal evolution [31]. In fact, multiple feed size
distributions can also be used to generate more dense data sets for
determining PBM parameters with more statistical certainty. In
addition, one can fit the same model to size distributions obtained
from different operating conditions (e.g. volume percentmedia loading
in ball milling) and assess the impact on the model parameters for a
given material. This can allow a numerical optimization of the process
parameters. Similarly, for the same operating conditions in themill, one
can determine the specific rate of breakage of different materials and
assess their relative particle strengths. Finally,fitting thenon-linearPBM
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