Powder Technology 196 (2009) 139-146

Contents lists available at ScienceDirect

Powder Technology

journal homepage: www.elsevier.com/locate/powtec

Effective packing of 3-dimensional voxel-based arbitrarily shaped particles

Thomas Byholm, Martti Toivakka, Jan Westerholm *

Abo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, Porthansgatan 3, FI-20500 Abo, Finland

ARTICLE INFO ABSTRACT

Article history:

Received 8 August 2008

Received in revised form 16 January 2009
Accepted 12 July 2009

Available online 26 July 2009

In many research areas including medicine and paper coating, packing of particles together with numerical
simulation is used for understanding important material functionalities such as optical and mass transfer
properties. Computational packing of particles allows for analysing those problems not possible or difficult to
approach experimentally, e.g., the influence of various shapes and size distributions of particles. In this paper
a voxel-based algorithm by Jia et al. [X. Jia, RA. Williams, A packing algorithm for particles of arbitrary
shapes, Powder Technology 2001, vol. 120, pp. 175-186.] enabling the packing of arbitrarily shaped particles,

Keywords: Co.
Pafticle packing is memory- and speed-optimised to allow for simulating significantly larger problems than before.
Digital Algorithmic optimisation is carried out using particle shell area reduction decreasing the amount of time

Voxel spent on collision detection, fast rotation routines including lookup tables, and a bit packing algorithm to
Optimisation utilise memory effectively. Presently several hundreds of thousands of complex arbitrarily shaped particles

Memory

can be simulated on a desktop machine in a simulation box consisting of more than 10° voxels.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In many different research areas including pharmaceutical science
and paper coating there is a clear need to better understand how
particles are packed when forming, e.g., a coating. A more detailed
knowledge of the packing process would be beneficial in order to
understand and optimize the microstructure of different kinds of porous
media.

Traditionally analytical methods have been used, packing mathe-
matically defined objects and applying various chemical and physical
interactions in order to assess the relative movements and interactions
of the objects. In this paper we will focus on computational methods for
improving the speed and memory efficiency of a voxel based particle
packing approach first presented in [1]. In voxel based representations,
solid objects are discretized using elementary volume units, voxels,
typically cubes, the 3-dimensional objects analogous to discretized 2-
dimensional objects, pixels. The simulations in [1] are based on moving
these voxel objects in different directions in space. For clarity, in Fig. 1
we have visualized two pixel objects in 2D-space. Any subsequent
translation or rotation of these two objects will retain the approximate
shape and size of each object, always filling or not filling a pixel and at
most one particle in any given pixel.

Well done code optimisations can have a dramatic effect on the
effectiveness of almost any algorithm [2], and hence we are interested in
both representing the voxel objects as effectively in computer memory
as possible in order to minimize memory usage, and also simulating the

* Corresponding author.
E-mail address: jan.westerholm@abo.fi (J. Westerholm).

0032-5910/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.powtec.2009.07.013

movement and interaction of voxel objects as quickly as possible. We
will also look at how to optimise low level operations, deeply nested in
the algorithm of [1], as these operations are good candidates for
optimisation based on their usage frequency. Although many of these
operations are fast, their frequency of use will add up to a considerable
total time.

Furthermore, since it is often desired to use high resolutions when
discretizing objects into voxels, there is a need for considering different
kinds of real time data compression for the packing matrix, that is, the 3-
dimensional space where the voxels are situated. Since voxel based
packings operate on a large 3-dimensional array for representing the
packing matrix, memory requirements tend to escalate very quickly.
High resolutions are needed for accurately representing a wide particle
size distribution as well as extreme aspect ratios. A straightforward way
of representing the packing matrix is to use an array containing id-
numbers for the respective particles as in Fig. 1. While this enhances
speed by not having to erase a particle before moving it, it consumes
large amounts of memory. To represent a 4000° array with 32-bit
elements we would need 256 GB of memory. Furthermore, the spatial
locality when accessing voxels in the packing matrix will be very poor
and the deepest nested operations of the algorithm consist of intensive
reading and writing of data. To overcome this problem, real time bit-
packing is applied representing particle positions with 1 and void space
with 0. Although a little bit more work need to be done like storing
particle metadata separately and always removing them before trying a
new position, the increased spatial locality and 32-fold reduced need for
memory outweigh the extra steps. These techniques allow for packing of
complex sets with arbitrarily shaped particles on normal 64-bit desktop
machines. As the amount of computer memory increases steadily future
desktops will be able to simulate even higher resolutions and larger

mailto:jan.westerholm@abo.fi
http://dx.doi.org/10.1016/j.powtec.2009.07.013
http://www.sciencedirect.com/science/journal/00325910

140 T. Byholm et al. / Powder Technology 196 (2009) 139-146

[2]][2]|[2]
[2]|[2]|[2]

(]]|]

K0} {IK0 {0
K0} {0 {0

El|EEE]

Fig. 1. 2-dimensional illustration of a packing matrix containing two distinct particles.
Each particle is described by a set of pixels identified by the id of the particle.

packing matrices. Basic statistic output was added for the packed
material, including porosity and rotational distributions of packed
particles and RMS surface roughness including a graphical user interface
for easy particle definition and batch processing.

We start by introducing the basics of the packing algorithm
considered in this paper in Section 2. In Section 3, we consider in
detail the different optimisations done to improve the time and
memory efficiency of the algorithm. The main results are presented in
Section 4 and the conclusions in Section 5.

2. Packing algorithm

The general structure of a particle simulation process can be
divided into three logically separated tasks: geometric definition,
particle movement rules and collision detection. In the geometric
definition we define how particles are represented geometrically and
which data structures are used to represent the particles. These
auxiliary structures will have a significant impact on memory
consumption and the efficiency of particle movements and collision
detection. Particle movement rules should capture the essential
physics of the packing process while keeping the logic of the rules
reasonably simple. Thirdly, the collision detection is a central feature
of the program inducing restrictions of particle movements. We will
be particularly interested in developing fast collision detection
methods by defining the particle geometry in such a way as to
support this.

2.1. Particle and voxel data representation

In our particle packing simulations the volume within which
particle movements are simulated, the packing matrix, is divided into
3-D unit cubes, voxels. A voxel is the 3D analogue to 2D pixels
representing the finest granularity of volume available. Hence e.g. all
particles consist of a collection of voxels, and any voxel within the
simulation box is either empty or occupied by precisely one particle.

The main idea behind voxel based particle packing is to avoid the
time consuming collision detection associated with analytical meth-
ods [3], where particles are represented as mathematical objects, a
sphere for example being represented by its centre point and radius.
Collision detection, or intersection test, is used to determine if a
particle due to its movement will be overlapping any other particle,
thus enabling us to decide if the particle movement will be allowed or
not. In a simple implementation an intersection test has to be done for
all voxels of every object in the simulation box. If an intersection with
any other object is found, the two are said to collide and the move
cannot be accepted. The intersection tests for analytically defined
particles are very time consuming and depend largely on the type of
object being checked for collision. Although this kind of approach can
be optimised in many different ways including neighbour lists [4],
octree representations [5] and bounding boxes, it is still very complex
for large numbers of particles. The basic complexity is 0(n) meaning

that n (number of particles) intersection tests have to be performed
for every single particle move. Furthermore the complexity increases
if we want to pack arbitrarily shaped objects using analytical methods
since these are often represented using large numbers of polygons,
meaning that the number of intersection tests needed is further
increased, depending on the number of polygons used to describe
every particle.

In Ref. [1] objects are not represented analytically, instead they are
built up from voxels [5]. Every object can be approximated by a set of
voxels arranged on a regular grid so that it represents the analytical
shape as closely as possible. The desired accuracy can be varied by
increasing the resolution, that is decreasing the voxel volume. All the
particles simulated are inserted in a large packing matrix. As we are
working with voxel data, all coordinates are represented using
integers. The packing matrix is a simple 3-dimensional data array
containing a particle id or a special void id at every element. When a
particle is moved, it is removed from its previous voxel position and
written into its new position in the array. The collision detection can
then be done by checking all the new positions that the voxels of the
particle in question will overlap. If any of these voxels already
contains an id belonging to another particle, the move is denied and
the particle is reset to its original position. This way we eliminate the
analytical intersection tests and we do not need to scan through all
particles as the collision detection is based on the packing matrix only.

To enable some of the optimisations that we will deal with in
Section 3, all particles are also represented as metadata. For every
particle we know the position of its centre point as defined by the
user, its current rotation and the original voxel map, so that we can
reconstruct it without the simulation box.

2.2. Particle movement

To create a particle packing, particles need to be introduced in one
way or another into a simulation box. A simple approach would be to
try random (x,y,z) positions until a position is found where the
particle does not overlap with any other particle. This procedure is
repeated until the desired packing density is reached. The problem
with this method is that it is not possible to achieve high packing
densities, as the particles are static after they have been added to the
packing. This means that large gaps will be formed between particles
which are difficult to fill, resulting in low packing densities.

To deal with this problem, various packing algorithms that move
the particles according to predefined rules can be implemented,
usually involving collision detection to ensure that particles are not
moving into the domain of another particle. Since the goal of particle
packing is often to make a densely packed structure, we have to find a
set of particle movement rules that optimises the particle movement
to achieve this goal. We are using the same fast statistical approach as
in [1] to achieve this effect. The underlying principle is to introduce
one or more particles every nth time step. They can be introduced
using many different methods, resulting in slightly different packing
structures, but the most straightforward way is to introduce new
particles at random (x,y) positions at the top of the simulation box. For
every time step, all particles are moved 1 voxel position along any axis
(x,y,z) and rotated freely within a preset maximum value, which is set
individually for all three axes relative to their initial rotation. The
packing property of the algorithm is achieved by assuring that the
particle movement is generally downwards according to the following
rule. New particle positions are found by assigning a 50% probability
to move in the negative directions and 50% probability for moving in
the positive directions on the x-, y- or z-axis, allowing moves along
every axis simultaneously. The maximum movement is 1 voxel in
each direction. To simulate the downwards movement a rebounding
probability between 0% and 100% is used, describing how high the
probability to accept an upwards movement is. The upwards
component of the move is accepted if and only if the rebounding

Download English Version:

https://daneshyari.com/en/article/238056

Download Persian Version:

https://daneshyari.com/article/238056

Daneshyari.com

https://daneshyari.com/en/article/238056
https://daneshyari.com/article/238056
https://daneshyari.com

