
Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/powtec

Correlation between mechanochemical reactivity forming *ABO*₄-type complex oxides and the structures of product materials

Qiwu Zhang *, Takatoshi Tojo, William Tongamp, Fumio Saito

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan

A R T I C L E I N F O

ABSTRACT

Article history: Received 23 February 2009 Received in revised form 7 May 2009 Accepted 18 May 2009 Available online 20 May 2009

Keywords: Mechanochemical reaction ABO₄ complex oxide Density Crystal structure

1. Introduction

Mechanical milling has been used in a wide range even up to solidstate reaction, so-called mechanochemical reaction, especially during high-energy dry milling. The reported mechanochemical reactions cover almost all the aspects of chemistry [1–15] and the interests in this field tend to rise continuously, considering the increasing number of the related papers published annually. However, there exists the need for further understanding the nature of mechanochemical reaction and more effort to summarize the experimental results. considering the current situation, of which the mechanochemical synthesis is conducted mostly based on researchers' experience because there are no general rules that govern the various types of mechanochemical reactions and rationalize the observations. In our past investigations [16,17], it has been found that the mechanochemical reactions depend on the crystal structures of starting materials and the starting materials which easily undergo polymorphous transformation from loose packing to close one of atoms seem to have high reactivity. For example, γ -Al₂O₃ rather than α -Al₂O₃ reacts with La_2O_3 to form $LaAlO_3$ mechanochemically [18]. This does not mean that γ -alumina can react mechanochemically with any other active samples by grinding operation. Recently we have published several reports on the syntheses of ABO₄-type oxides based on mechanochemical reactions between trivalent oxides (A2O3) and pentavalent oxides (B_2O_5) [19–21]. We have found that γ -Al₂O₃ does

Through the experiments for syntheses of ABO_4 (A: Al, Fe, Cr, In, La, Bi; B: P, V, Nb, Sb), investigations on the relation between mechanochemical reactivity and (I): the crystal structure of starting materials or (II): the crystal structure of product materials has been conducted. It has been found that it is a necessary condition to use structurally active substances against milling operation for the occurrence of a mechanochemical reaction. In addition, it is easier to facilitate a mechanochemical reaction to form ABO_4 -type oxide which is of larger size of cation and in denser structural state.

© 2009 Elsevier B.V. All rights reserved.

not react even with phosphorus pentoxide (P_2O_5) , although both compounds are active and react with other compounds easily. Clearly there is a need to develop general rules to realize a wide range of understanding on mechanochemical reactions. This may allow further improvement and application for designing new materials or other research fields.

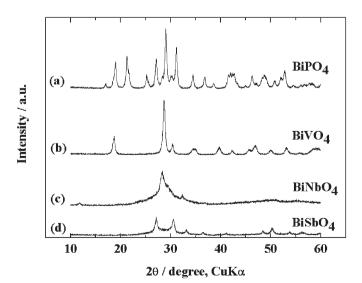
As one effort for the aim, the purpose of this work is to clarify the mechanism of the involved mechanochemical reactions to form *ABO*₄-type oxides, of which the variety of the crystal structures [22,23] allows a reasonable approach toward the correlation between the occurrence of a mechanochemical reaction and the crystal structures of starting and product samples. Since many factors including both mechanical operation and chemical natures of the used compounds may influence the occurrence of mechanochemical reaction, the data obtained at the same conditions of milling operation are used. And the focus is put on the effects of physicochemical properties of chemical compounds involved.

2. Experimental

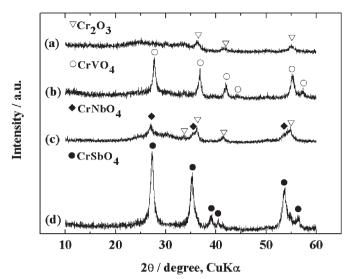
In₂O₃, La₂O₃, Bi₂O₃, P₂O₅, V₂O₅ and Nb₂O₅ (Wako Pure Chemical Industries Ltd., Japan), FeOOH (goethite phase, Kojundo Chemical Lab. Co., Ltd., Japan) and Sb₂O₅ (Sigma-Aldrich, USA). Cr₂O₃ · nH₂O (amorphous phase) prepared by calcining Cr(OH)₃ · nH₂O at 300 °C for 2 h, were used in this experiment. AlOOH (boehmite phase) was prepared by calcining Al(OH)₃ at 400 °C for 2 h. For prevention of water absorption, P₂O₅ was handled under dry air through all experiment. Trivalent oxide or oxy-hydroxide (A_2O_3 or AOOH) and pentoxide (B_2O_5) were mixed with equal A/B atomic ratio, and 2 g of the mixture were put into a zirconia pot of 45 cm³ inner volume with 7

^{*} Corresponding author. Tel./fax: +81 22 217 5137. E-mail address: zhangqw@tagen.tohoku.ac,jp (Q, Zhang).

^{0032-5910/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.powtec.2009.05.008


zirconia balls of 15.7 mm diameter. Grinding operation was conducted in air by using a planetary ball mill (P-7, Fritsch, Germany). The milling was operated normally at 700 rpm for 2 h, through the experiment. In case of no observation of reaction product, extension up to 8 h of grinding operation was performed for confirmation. X-ray diffraction (XRD) analysis was performed to identify the phases in the samples. Other detailed experimental conditions are referred to from the published reports [19–21], of which remaining amount of V₂O₅ in the synthesis reaction of CrVO₄ has been quantitatively evaluated [20].

3. Results and discussion


3.1. Milled products

Besides the published results [19–21], other new data are presented before performing a full discussion. Fig. 1 shows XRD patterns of a Bi₂O₃ and B_2O_5 mixture milled for 2 h. The XRD analysis has confirmed that Bi₂O₃ reacts with every pentavalent oxide of P₂O₅, V₂O₅, Nb₂O₅ and Sb₂O₅ powders to form BiPO₄ (JCPDS No. 80-0209), BiVO₄ (JCPDS No. 83-1700), BiNbO₄ (JCPDS No. 71-1518) and BiSbO₄ (JCPDS No. 82-1805). Together with the published data, it becomes known that mechanochemical reactions can be carried out between La₂O₃, In₂O₃ or Bi₂O₃ with the four pentavalent oxides to synthesize the corresponding compounds.

On the other hand, as to other trivalent oxides of Fe_2O_3 , Cr_2O_3 Al₂O₃, there exist various crystal states. It has been known that the crystal structures of starting samples play an important role in stimulating a mechanochemical reaction. Furthermore, it has been found that the starting materials which easily undergo the polymorphic transformation from loser packing of atoms to closer packing of atoms have the higher reactivity [16–18]. Based on such knowledge, gamma-type oxides with cubic structure or oxyhydroxides are used as starting materials. In the case of chromium oxide, for example, amorphous hydrated Cr₂O₃·nH₂O with similar composition with CrOOH rather than the crystalline Cr₂O₃ with corundum-type structure, has been found to react with V_2O_5 , Nb_2O_5 , Sb_2O_5 to form CrVO₄, CrNbO₄ and CrSbO₄, respectively, as shown in Fig. 2. In addition, CrVO₄ generated by milling has rutile-type structure, being a high-pressure phase [21]. However, it has been found that no reaction to form CrPO₄ has occurred even with the use of amorphous oxide, particularly considering P₂O₅ is very active sample and has high tendency to react with other sample.

Fig. 1. XRD patterns of four kinds of a mixture of Bi₂O₃ and B₂O₅ (*B* = P, V, Nb, Sb) milled for 2 h., (a): Bi₂O₃-P₂O₅, (b): Bi₂O₃-V₂O₅, (c): Bi₂O₃-Nb₂O₅, (d): Bi₂O₃-Sb₂O₅.

Fig. 2. XRD patterns of four kinds of a mixture of $Cr_2O_3 \cdot nH_2O$ and B_2O_5 (B = P, V, Nb, Sb) milled for 2 h, (a): $Cr_2O_3 \cdot nH_2O - P_2O_5$, (b): $Cr_2O_3 \cdot nH_2O - V_2O_5$, (c): $Cr_2O_3 \cdot nH_2O - Nb_2O_5$, (d): $Cr_2O_3 \cdot nH_2O - Sb_2O_5$.

Similarly, for syntheses of FeBO₄ and AlBO₄ (B = P, V, Nb, Sb), FeOOH and AlOOH were used as starting materials, respectively, instead of α -Fe₂O₃ and α -Al₂O₃. Figs. 3 and 4 shows XRD patterns of FeOOH-B₂O₅ or AlOOH-B₂O₅ mixtures milled for 2 h, respectively. In Fig. 3, formations of FeSbO₄ and FeNbO₄ have been observed. However, it is seen that the starting sample FeOOH has remained in the ground samples when P_2O_5 and V_2O_5 are used. There exists a clear difference in the reactivity toward FeOOH between the four pentoxides. In Fig. 4, similar phenomena have been observed. Resulting from the difference in the reactivity of the four pentoxides toward AlOOH, only the formation of AlSbO₄ without AlPO₄, AlVO₄ and AlNbO₄, has been confirmed. Even with prolonged milling time to 8 h, no change in the phases of these non-reacted systems has been observed. These results indicate that, although it is necessary to use structurally active substances for stimulating mechanochemical reactions, it is not a sufficient condition. Since no reaction occurs between two active substances of, for example, FeOOH and P₂O₅, it seems that there exist other factors to influence the occurrence of a

Fig. 3. XRD patterns of four kinds of mixture of FeOOH and B_2O_5 (B = P, V, Nb, Sb) milled for 2 h., (a): FeOOH–P₂O₅, (b): FeOOH–V₂O₅, (c): FeOOH–Nb₂O₅, (d): FeOOH–Sb₂O₅.

Download English Version:

https://daneshyari.com/en/article/238338

Download Persian Version:

https://daneshyari.com/article/238338

Daneshyari.com