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The Unconfined Yield Stress (σc) and Major Consolidation Stress (σ1) of a cohesive powder′s compact are
found by constructing two Mohr semicircles that are tangential to the Yield Loci Curve (YLC); the first
passing through the origin (0,0) and the second at the consolidation conditions (σ0,τ0). When the YLC can be
described by the Warren-Spring equation (τ/C)n=(σ+Τ)/Τ or an alternative algebraic expression, this
translates into finding the solution of two pairs of simultaneous equations that set the conditions for the
tangential YLC and corresponding Mohr semicircles to have the same value and slope at their respective
contact points. Once the Mohr semicircle′s equation that corresponds to the consolidation conditions has
been found, the Effective Angle of Internal Friction (δ) is calculated in a similar manner. The numerical
calculation procedure has been automated in a freely downloadable program posted on the web as a
Wolfram Project Demonstration. It allows the user to choose and adjust the values of C, T, n and σ0, and the
plot′s scales, by moving sliders on the computer screen. The program calculates and displays the
corresponding values of σc, σ1 and δ, and plots the YLC, two Mohr semicircles and the line that defines δ.
Since a linear YLC is just a special case of the model where n=1, the program can be used with input
parameters originally obtained by linear regression. But although the program can render reasonable
estimates of the principal stresses σc, σ1 and δ in this case too, the physical meaning of C, and especially T, is
unclear when calculated by extrapolation instead of being determined experimentally.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The flowability of cohesive powders has been primarily determined
through shear analysis. The tests are performed on powder specimens
consolidated and sheared under various compressive stresses, and
are sometimes complemented by tensile strength measurements. The
test results of specimens consolidated under the same normal
(compressive) stress are in the form of a ‘Yield Loci Curve’, shown
schematically in Fig. 1. From this Yield Loci Curve, one can obtain the
compact′s ‘major consolidation stress’, σ1, and its ‘Unconfined Yield
Stress’, σc, which is also shown in the figure. The relationship between
σc and σ1, obtained by testing the powder under several consolidation
stresses is known as the ‘Flow Function’. It is frequently used in bin and
hopper design [1–7]. In contrast with free flowing powders, which have
a ‘low’ Flow Function, a cohesive powder has a ‘high’ Flow Function,
indicating that it develops considerable strength when consolidated
under a normal stress. The Flow Function, together with the powder′s
Effective Internal Angles of Friction (δ), and the wall′s, determines
bin geometries and aperture sizes that are appropriate for gravitational
flow.

The experimental Yield Loci Curves of many cohesive powders can
be described by the Warren-Spring equation [8]:

τ
C

� �n
=

σ + T
T

ð1Þ

where τ is the observed yield stress in shear, C is the compact′s
‘cohesion’, σ the normal consolidation stress and T the compact′s
tensile strength, all in stress units, and n a dimensionless ‘curvature
index’ (1≤n≤2). In some cases, experimental Yield Loci Curve,
especially when far enough from the shear stress axis (see Fig. 2), can
be described by a straight line, known as the Coulomb Equation, i.e.,

τ = C + bσ ð2Þ

where C is the straight line′s intercept with the τ axis and b its slope.
Formally, Eq. (2) could be considered a special case of Eq. (1)

where C is the Cohesion and b=C/T. In reality, however, such a
relationship between C and T is probably very rare in cohesive
powders.

There have also been attempts to improve on the Warren-Spring
equation [9], and to link the cohesion and tensile strength through a
power-law relationship [10], which could be incorporated in the Yield
Loci Curve′s equation. But by and large, Eq. (1) has been the most
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commonly used model to describe experimental Yield Loci Curve
mathematically, especially when the tensile stress (T) has been inde-
pendently determined.

Finding σc and σ1 can be done graphically or by calculation (7).
The latter can be done in different ways. For this work, we have
chosen the one based on that at the point of contact between the Yield
Loci Curve and tangential Mohr semicircle, the two have the same
numerical value and also the same local slope.

2. Calculation of the Unconfined Yield Stress, σc, and Principal
Consolidation Stress, σ1, using the Warren-Spring equation

2.1. Calculation of σc

A semicircle whose center lies on the σ axis is described by the
equation:

τ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðσ−MÞ2

q
ð3Þ

where R is its radius and M its center′s location along the σ axis.
Since by definition (see Fig. 1) σc=2M and R=M, Eq. (3) becomes:

τ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσc−σÞσ

p
ð4Þ

At the point where the Mohr semicircle is tangential to the Yield
Loci Curve, the point (σƒ, τƒ) in the figure, its local slope is:

dτ
dσ jσf τf

=
σc−2σf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσc−σf Þσf

q ð5Þ

At this point of contact (σƒ,τƒ), the local slope of the Yield Loci
Curve when described by the Warren-Spring equation is:

dτ
dσ jσf τf

=
C 1 + σf

T

� �1
n−1

nT
ð6Þ

Consequently, we have the two equalities:

τ = C 1 +
σf

T

� �
1
n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσc−σf Þσf

q
ð7Þ

which signifies that they Yield Loci Curve and Mohr semicircle share
the same point (σƒ, τƒ) and

dτ
dσ

=
C 1 + σf

T

� �1
n−1

nT
=

σv−2σf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσc−σf Þσf

q ð8Þ

which signifies that the two have the same slope at this point.
Eqs. (7) and (8) are two simultaneous algebraic equations that

have two unknowns, namely σc, the ‘Unconfined Yield Stress’ in
which we are interested, and σƒ the location of the point where the
Mohr semicircle and Yield Loci Curve are tangential.

The two equations can be easily solved numerically using the
‘FindRoot’ of Mathematica® (Wolfram Research, Champaign, IL), the
program we used in this work, but also by equation solvers of other
commercial mathematical software. Once the two equations are
solved, which is done almost instantaneously, the program renders
the value of σc and plots the corresponding Mohr semicircle—see
below. A similar procedure can be developed for YLC’s that are des-
cribed by alternative algebraic expressions.

2.2. Calculation of σ1

The Major Principal Stress at the initial consolidation conditions,
i.e., where σ=σ0 and τ=τ0 is known as the ‘Major Consolidation
Stress’ and called σ1—see Fig. 1. From basic geometry, the Mohr
semicircle that intersects with the σ-axis at the point σ1 has to follow
the equation:

τ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ1−MÞ2−ðσ−MÞ2

q
ð9Þ

whereM, as before, is the semicircle center′s location along the σ-axis.
The slope of this Mohr semicircle at its contact point with the Yield

Stress Loci Curve (σ0, τ0) is therefore:

dτ
dσ jσ0τ0

=
M−σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ1−MÞ2−ðσ0−MÞ2
q ð10Þ

Here again, since the Yield Loci Curve and its tangential Mohr
semicircle have the same numerical value and slope at their contact
point, (σ0 τ0) in this case, we have to solve two simultaneous
equations in order to extract the principal stress. They are:

C 1 +
σ0

T

� �1
n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ1−MÞ−ðσ0−MÞ2

q
ð11Þ

and

C 1 + σ0
T

� �1
n−1

nT
=

M−σ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ1−MÞ2−ðσ0−MÞ2

q ð12Þ

The two unknowns here are σ1, the Major Consolidation Stress in
which we are particularly interested, and M the Mohr semicircle′s
location along the σ-axis. These two simultaneous equations too can

Fig. 1. A Yield Loci Curve generated with the Warren-Spring equation, the two Mohr
semicircles and corresponding Unconfined Yield Stress, σc, and major consolidation
stress, σ1. C and T are the compact′s ‘cohesion’ and tensile strength, respectively. The
effective angle of friction, δ, is also shown.

Fig. 2. A “linear” Yield Loci Curve frequently observed when the compact′s tensile
strength (T) and ‘cohesion’ (C) have not beenmeasured. Notice that although data in the
‘linear region’ can be used to estimate the principal stresses, extrapolation of the linewill
most probably render incorrect values of both T and C. Also notice that in the linear case,
the tangent line meets the larger Mohr semicircle at the consolidation conditions.
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