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The translation of two identical rigid spheres perpendicular to their line-of-centers normal to a rigid plate is
analyzed theoretically for Reynolds number ranges from 0.1 to 40. The geometry considered allows us to
examine simultaneously the effect of the presence of a boundary and that of nearby particles on the tran-
slation of a particle. We show that the presence of the plate has a significant influence on the flow field near
the spheres, especially when Reynolds number is low. Due to the competition between the nozzle effect and
the sphere–sphere interaction, the degree of the boundary effect on the drag coefficients of the spheres has a
local minimum as the separation distance between two particles varies. In addition, the deviation of the ln
(drag coefficient)–ln(Reynolds number) curve from a Stokes'-law-like relation may also have a local mini-
mum as the separation distance between two spheres varies. An empirical relation is proposed to correlate
the drag coefficient with the key parameters of the present problem for the case where Reynolds number is
smaller than unity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The translation of particles in a fluidmedium finds various applica-
tions in operations of both laboratory and industrial scales. Depending
upon the operating conditions, the behavior of a translating particle
can be influenced by its physical properties such as its shape, size, and
relative density, the nature of fluid medium, and that of the applied
field such as gravitational acceleration. In addition, the concentration
of particles can be significant because the interaction of a particle with
neighboring particles will certainly influence its behavior. Although
the concentration effect is usually neglected in a laboratory study to
avoid solving a complicated many-body problem, it needs be taken
into account in practice because the concentration of particles is
usually appreciable. In general, both the flow field surrounding an
interactive particle and the drag acting on the particle can be different
appreciably from those of an isolated particle. The settling speed of
rigid particles in a dispersion, for instance, is slower than that of the
corresponding isolated particle [1]. The analysis of the hydrodynamic
interactions between two particles was originated by Stimson and
Jeffery [2] through considering the translation of two identical rigid,
coaxial spheres moving slowly along the line of their centers in an
unbounded viscous fluid. Happel and Pfeffer [3] investigated experi-
mentally the slow falling of two identical, rigid, coaxial spheres along
the line of their centers in a viscous liquid. A micro-force system was

developed by Zhu et al. [4] for the measurement of the drag acting on
two interacting particles at a medium large Reynolds number. Using
this technique, Liang et al. [5], Chen and Lu [6], and Chen and Wu [7]
measured the drag acting on two interacting rigid spheres in a
Newtonian fluid. Daugan et al. [8,9] investigated experimentally the
settling of two or three identical particles along their line-of-centers in
a shear-thinning fluid at a low Reynolds number. Hsu et al. [10]
evaluated the drag acting on two coaxial, nonuniformly structured
flocs in a uniform flow field. The translation of two nonuniformly
structured flocs along the axis of a cylindrical tube was analyzed by
Hsu et al. [11]. Hsu and Yeh [12] studied the translation of two coaxial
rigid spheres along the axis of a cylindrical pore filled with a shear-
thinning Carreau fluid.

Among the possible arrangements of particles, the case of two
spheres translating side by side has been considered by many investi-
gators. For example, Kim et al. [13] considered the case of a uniform
flow past two spheres held fixed side by side for Reynolds number up
to 150. Tsuji et al. [14] visualized the flow of two or three identical
rigid spheres moving in an unbounded viscous fluid with Reynolds
numbers smaller than 103, and measured the force acting on a sphere.
They found that the drag acting on a sphere decreases with decreasing
sphere–sphere distance. The same problem was solved numerically
by Folkersma et al. [15] through a finite element method for small
to medium large Reynolds numbers. Legendre et al. [16] calculated
the drag and the lift forces acting on two identical spherical bubbles
moving side by side in a viscous fluid for Reynolds number ranging
from 0.02 to 500. Tsuji et al. [17] investigated an unsteady uniform
fluid flow past two identical particles; both the case where the flow is
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parallel to the line connecting the centers of the spheres and that
perpendicular to the line connecting the centers were considered.
Schouveiler et al. [18] studied both experimentally and theoretically
the problem of a uniform flow past two stationary spheres at low
Reynolds numbers; the flowwas perpendicular to the line connecting
the centers of the spheres.

The presence of a boundary can also influence the behavior of a
translating particle. In practice, this occurs, for example, in the sedi-
mentation of particles in a relatively small vessel and/or if particles
are considerably close to the vessel wall. In general, the presence of a
boundary has the effect of raising the drag acting on a particle
[19,20].

In this study, we consider the translation of two identical, rigid
spheres perpendicular to their line-of-centers and normal to a rigid
plate in a Newtonian fluid under the conditions of low to medium
large Reynolds number. The geometry under consideration allows us
to examine simultaneously both the presence of a boundary and the
neighboring particles on the behavior of a target particle. In particular,
the influences of the separation distance between two spheres, the
distance between spheres and plate, and the Reynolds number, on the
drag acting on the spheres are investigated in detail.

2. Mathematical modeling

Referring to Fig. 1, we consider the translation of two identical rigid
spheres in an incompressible Newtonian fluid perpendicular to their
line-of-centers toward a large rigid plate with velocity V. Let h, rp, and
S be the distance between the center of a sphere and the plate, the
radius of a sphere, and the center-to-center distance between two
spheres. The present problem is of two-dimensional nature, and the
Cartesian coordinates (x, y) shown in Fig. 1 are adopted. For
convenience, the spheres are remained fixed and the bulk liquid and
the plate move with relative velocity V. Therefore, the governing
equations and the associated boundary conditions for the flow field
can be expressed as following [21]:

ρu �ju = −jP + μju ð1Þ

j � u = 0 ð2Þ

ux = V at x = 0 ð3Þ

ux = V as yY F ∞ ð4Þ

ux = 0 on the sphere surface ð5Þ

Here, ∇ is the gradient operator, P is the pressure, and ρ, μ, and u,
are the density, the viscosity, and the velocity of the fluid, respectively,
and ux is the x-component of u.

For the translation of an isolated rigid sphere in an infinite
Newtonian fluid in the creeping flow regime the drag coefficient CD

and Reynolds number Re are related by the Stokes law [21–23],
CD=24/Re. In the present case, that relation needs be modified as

CD =
A
Re

; ð6Þ

where A is a function of S, h, rp, and Re. CD can be evaluated by [21,22]

F =
1
2
ρV2

� �
πr2p

� �
CD; ð7Þ

where F is the hydrodynamic drag acting on the spheres, which is
obtained by first solving Eqs. (1) and (2) subject to Eqs. (3)–(5), and
then evaluate the relevant forces acting on the spheres. FIDAP 7.0 [24]
is adopted to solve the governing equations and the associated
boundary conditions. To test its applicability, the translation of two
rigid spheres perpendicular to their line-of-centers considered by
Happel and Brenner [19], where analytical result is available for
creeping flows, is solved by that software. The results obtained are
summarized in Table 1. For creeping flows, the drag on the left sphere
should be the same as that on the right sphere. The small difference
between the numerically calculated drags on the spheres seen in
Table 1 arises mainly from Re is not small enough and the precision
limit of the software. The level of the deviation, however, suggests that
the performance of the software adopted is satisfactory.

3. Results and discussion

The influences of the parameters key to the present problem,
including (S/rp), (h/rp), and Re, on the behaviors of the flow field and
CD are investigated through numerical simulation. Double precision is
used throughout the computation, and grid independence is checked.
In the latter, using roughly 9×106 elements in the liquid domain is
sufficient for the ranges of the parameters considered.

Some typicalflow fields simulated at various combinations of (h/rp),
(S/rp), and Re are presented in Figs. 2 and 3. As seen in Fig. 2, boundary
layer separation occurs in the rear region of a sphere at Re=40 and the

Fig.1. The translation of two identical rigid spheres of radius rp perpendicular to their line-of-centers normal to a large rigid plate; h is the distance between the center of a sphere and
the plate, S is the center-to-center distance between two spheres, and (x, y) is the Cartesian coordinates adopted. The spheres are fixed in space and the bulk fluid and the plate move
with a relative velocity V.

Table 1
Drag on two side-by-side rigid spheres for various values of (S/rp) at Re=0.1; analytic
results are derived by Happel and Brenner [19], numerical results are those obtained in
this study.

S/rp Analytic (N) Numerical, left
sphere (N)

Percentage
deviation (%)

Numerical, right
sphere (N)

Percentage
deviation (%)

3 7.32497E−05 7.47071E−05 1.98954 7.53580E−05 2.87821
4 7.90354E−05 7.87338E−05 −0.38149 7.89332E−05 −0.12923
5 8.13411E−05 8.16999E−05 0.44117 8.05113E−05 −1.02013
6 8.36468E−05 8.48479E−05 1.43600 8.45428E−05 1.07241
10 8.76385E−05 8.75717E−05 −0.07620 8.77960E−05 0.17979
14 8.94425E−05 8.89436E−05 −0.55780 8.86008E−05 −0.94106
20 9.0837E−05 9.08068E−05 −0.03319 9.08668E−05 0.03283
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