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Arching can occur during silo discharge of cohesive powders. In general this happens when the outlet size is
not wide enough. Flow aid devices, such as aeration pads, are commonly used in the industry to achieve
proper flow of cohesive materials. However, no design criteria are presently available for such kind of devices
and, in particular, for the intensity of aeration to be used to avoid arching. Aim of this paper is the evaluation
of the limiting aeration condition to produce the collapse of established arches and the minimum aeration
rate necessary for no arching discharge flow. Experimental tests are carried out in an aerated flat bottom silo.
The measured quantities are the aeration rate at arch collapse and the arch size. Powder permeability is
characterized by fluidization experiments. A simplified model is proposed to assess on the prevailing physical
phenomena and predictively evaluate the minimum aeration rate to determine no arching discharge flow.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Fine and cohesive powders may discharge with some difficulty from
silos and hoppers due to the presence of both gas–solid fluid dynamic
and solid–solid cohesive interactions. Gas–solid fluid dynamic interac-
tions, in fact, can generate gas pressure gradients opposed to the solids
flow [1]. Solid–solid cohesive interactions, enhanced by consolidation
phenomena, can determine the formation of stable structures, such as
pipes and arches (domes) which may stop the solids flow. Aeration of
powders during silo discharge is used to overcome both these problems.
The main effect of aeration is to achieve favourable pressure gradients
near the hopper outlet. In the prediction of the discharge rate of fine
aeratable powders (group A according to Geldart [2], and Geldart and
Williams [3]) this effect can be simply accounted for by including the
local gas pressure gradient in the effective field of mass forces [4,5]. A
similar approach can be followed also for cohesive powders (group C
according to [3]) if the aggregative behaviour of these powders is
properly considered [6]. It has also been proven that aeration cannot
modify the solidflowproperties but affects only the resulting stress state
[7–9]. Therefore, it can be hypothesized that the breakage of arches due
to aeration can be approached with the conventional analysis on arch
stability, in which an arch of consolidated powder is considered stable
when its strength is high enough to sustain the stresses determined by
its weight. In particular, the gas pressure gradient can be included in the
analysis as an additionalmass force acting for the arch consolidation and
breakage.

Drescher [10] classified the models developed to predict arch
stability into two different categories according to the physical approach

followed. In “structural mechanics” models, the arch or dome is re-
garded as a structural element loaded by its ownweight. In “continuum
mechanics”models the formation of stable arches is identified with the
static equilibrium of the whole mass of material in the hopper with the
arch completely developed, that iswithout the contribution of any stress
supporting themass frombelow [11]. Several authors [12–15]developed
models according to the first of these two categories. In particular the
approachdue to Jenike [14]will be followed in this paper. According to it,
when the arch is on the verge of collapsing, itsweight is just balanced by
the vertical component of themaximumnormal stress close to thewalls
as it is shown in Fig. 1a). Jenike and Leser [16] derived the condition to
determine the smallest outlet diameter, D, from the force balance by
assuming the following condition for arch failure:

σ1
0 =

γD
H θð Þzσ c ð1Þ

where σ1′ is the abutment stress of the arch, σc is the unconfined yield
strength of the powder in use, γ is themass force/unit volume andH(θ)
is a function which takes into account the effects of variation of the
thickness of the arch with the silo geometry and the hopper half angle
θ. Under gravity flow:

γ = ρbg ð2Þ
where ρb is the powder bulk density and g the acceleration due to
gravity. Jenike and Leser [16] reported a graphical solution of H(θ) that
is well approximated by the following equation [13]:

1
H θð Þ =

65
130 + θ
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ð3Þ

where the silo geometry is accounted for by the exponent i, i=0 for
wedgehoppers and i=1 for conical hoppers.More recently, an alternative
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description of the shape of a cohesive arch in hoppers and silo was
proposed by Matchett [17].

In mass flow silos, the consolidation stress at the outlet, σ1, de-
pends on the distance from the hypothetical hopper vertex. According
to Jenike [14], it is possible to show that:

σ1 = γD
1 + sin/eð Þ s m; θ;/e;/wð Þ

2 sinθ
ð4Þ

where s is a complex function depending on the hopper geometry
(wedge or conical) on its half angle, θ, on the tensional state (m=1 for
active state, m=−1 for passive state), on the powder effective angle of
internal friction, ϕe, and on the powder angle of wall friction, ϕw.
Combining Eqs. (1) and (4) it is possible to obtain the relationship
between σ1′ and σ1 in terms of their ratio, the flow factor ff:

ff =
σ1

σ 0
1
=H θð Þ 1 + sin/eð Þ s m; θ;/e;/wð Þ

2 sinθ
ð5Þ

Diagrams reporting the no arching flow factors for conical and
wedge hoppers are given by Jenike [18] for different values of θ, ϕe and
ϕw. In funnel flow bins, the powder forms its own flow channel. In this
case Jenike [18] recommended that the technique proposed for mass
flow may be adapted with the assumption that

/w = arctan sin /eð Þ½ �: ð6Þ

With such an assumption the flow factor ff becomes a function of
ϕe and of the slope angle of the live channel, θ′. ff contours for arching
in funnel flow are reported in Jenike ([18], p.187). The flow factor ff can
be compared with the powder flow function FF in which the
unconfined yield strength σc is given as a function of the consolidation
stress σ1:

σ c = FF σ1ð Þ ð7Þ

An example of the graphical construction connected to this
procedure is reported in the following in Fig. 4. An arch characterized
by its diameter D is stable if the limiting yield stress σ1/ff, obtained
with Eq. (4), is smaller than the unconfined yield strength FF(σ1)
obtained with experimental measurement of the flow function. The
whole hopper design procedure to prevent arching both in mass flow
and funnel flow hoppers was recently reported by Schulze [19].

Kurz [20] suggested that, in order to describe the effective state of
stress within an aerated powder, the gas pressure gradient together
with gravity made up the effective body force γ⁎ promoting the arch
collapse. This assumption implies that aeration does not change the
powder flow properties which was actually demonstrated by more
recent findings [7–9]. Kurz [20] calculated the extra abutment effect

due to air flow by integrating the Darcy law with an analogue model.
However, he found an under prediction of the aeration rate necessary
to break the arch. Jochem and Schwedes [21] extended the analysis by
Kurz [20] by calculating the gas pressure field inside the aerated
hopper to derive the air flow rate required for the destruction of the
arch.

In this paper we will demonstrate that this approach is correct if
the effective body force is used not only to account for the extra forces
acting on the arch collapse, but also to account for the extra
consolidation of the material within the arch. We will also propose a
design approach to evaluate the critical aeration rate necessary to
avoid arching with a cohesive powder.

2. Theoretical background

According to Fig. 1b) the gas pressure gradient can be assumed to
be on average coaxial to the gravity close to the outlet and, therefore,
the effective body force can be assumed to be the sum of the weight
and of the force due to the interstitial air pressure gradient:

γ⁎iρbg +
Ap
Ar jd ð8Þ

where, ρb is the powder bulk density, g the acceleration due to gravity,
p the gas pressure, r the distance to the ideal vertex of the conical
domain interested by the solids flow, the subscript “d” to the
derivative indicates that its relevant value has to be evaluated on
the dome surface. Assuming that this extra force acts not only to
determine the dome collapse represented, but also the consolidation
state given, both Eqs. (1) and (4) will continue to apply with γ⁎ in
place of γ and, therefore, the same flow factor given by Jenike Eq. (5)
will still apply. This means that independently of the dome size, at a
certain aeration rate the critical condition for the arch collapse in
terms of consolidation stress σ1 and material strength σc is the same
of the non aerated case and can be calculated with the Jenike
procedure in advance, simply by searching the intersection between
the material flow function and the silo flow factor.

In order to better understand the effect of air flow rate on the arch
collapse we have to express the gas pressure gradient as a function of
the air flow rate. A reasonable estimate of the gas pressure gradient at
the dome can be made as follows:

Ap
Ar jd = nηkUd ð9Þ

Eq. (9) describes the pressure gradient (positive in the silo inward
direction) as a function of the bed permeability, k, the local gas
velocity, Ud (positive in the outward direction), the gas viscosity, η,

Fig. 1. Forces acting on a stable dome: a) non aerated case; b) aerated case.
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