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Abstract

This paper presents a model for oblique collisions of spherical particles with a plane surface covered with a thin liquid layer. Elastohydrodynamic
theory developed previously for fully immersed collisions [Davis, Serayssol and Hinch 1986 JFM 63 479–497] is modified for the normal
component of motion to account for the finite thickness of the liquid layer. The resulting time evolution of the film thickness profile is then used along
with sliding lubrication to determine the tangential component of motion. The critical Stokes number (dimensionless ratio of particle inertia and
viscous forces), belowwhich no rebound is seen, is predicted in terms of the physical properties of the materials involved in the collision, as described
by a compliance parameter representing a dimensionless measure of elastic deformation due to viscous forces. Beyond the critical Stokes number, the
normal restitution coefficient is found to increase with the Stokes number and the compliance parameter, asymptoting to the dry restitution coefficient
at high Stokes numbers. The lubrication suction resistance during rebound is limited by cavitation. The tangential restitution is independent of the
impact angle and is linearly dependent on the ratio of the fluid layer thickness to the sphere radius, in addition to depending on the Stokes number and
compliance parameter. The tangential restitution is found to be close to unity and is generally higher for a larger value of the compliance parameter.
Moreover, the tangential restitution is seen to increase with the Stokes number at small compliance and decrease with the Stokes number at large
compliance. The change in rotational velocity exhibits trends that are the reverse of the tangential restitution. Finally, closed-form expressions have
been developed for describing the restitution coefficients and dimensionless change in rotational velocity.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of two spheres, or of one sphere and a flat
surface, undergoing a head-on elastic collision under dry
conditions was first studied by Hertz [1]. Thereafter, several
studies have been published, including the JKR theory provided
by Johnson, Kendall and Roberts [2], which considers adhesive
forces in inelastic collisions, and the work of Maw, Barber and
Fawcett [3], which is an extension of the Hertzian theory to
oblique impacts. A review on the forces involved in contact
modeling can be found in [4]. There have also been several
experimental investigations of dry sphere-plane collisions (e.g.,
[5–9]) and sphere-sphere collisions (e.g., [10,11]).

Collisions of particles in the presence of liquids occur in
several applications, including filtration, coagulation, agglom-

eration, inertial capture, etc. Wet collisions are much more
complex than dry collisions, as they involve the coupling of
fluid dynamics with solid mechanics. Davis, Serayssol and
Hinch [12] developed elastohydrodynamic theory for studying
head-on collisions between two spheres in close contact and
immersed in a liquid. Their work provides the first rational
criteria for predicting whether the spheres will stick or rebound
after colliding in a liquid. This work also determines the
dynamic force, relative velocity, separation and surface
deformation profile of the spheres, based on two non-
dimensional parameters. The first parameter is the Stokes
number, which represents the ratio of inertia of the spheres and
the viscous forces in the separating fluid layer:

St ¼ mVo

6kla2
; ð1Þ

where m is the reduced mass of the two spheres, Vo is the initial
relative normal velocity, μ is the viscosity of the fluid and a is
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the reduced radius of the two spheres. The second non-
dimensional parameter is the elasticity parameter, which
represents the ratio of the viscous forces tending to deform
the solids and the stiffness of the solids resisting deformation:

e ¼ 4hlVoa3=2

x5=2o

; ð2Þ

where xo is the initial separation between the undeformed
spheres and

h ¼ 1−v21
k E1

þ 1−v22
k E2

ð3Þ

is a function of material properties, with νi and Ei being
Poisson's ratio and Young's modulus for sphere i, respectively.
The special case of a sphere impacting a plane results when
a=a1 and a2→∞. The restitution coefficient, e, is defined as
the ratio of the magnitude of the relative rebound velocity to the
relative approach velocity. Davis et al. [12] considered the ratio
of the maximum rebound velocity to the initial approach
velocity as the restitution coefficient. They presented a plot of
the restitution coefficient versus Stokes number for various
elasticity parameters.

Davis [13] extended the theoretical work of Davis et al. [12]
to account for surface roughness, adhesive forces between
particles, and the discrete molecular nature of the fluid.
Barnocky and Davis [14] dropped spheres onto both smooth
and rough surfaces covered with thin liquid layers from varying
heights and observed the critical drop height at which the
spheres stopped sticking and above which rebound from the
surface occurred. Their results are in agreement with the
elastohydrodynamic theory, with approximate corrections to
account for cavitation and the finite thickness of the liquid layer.
Lundberg and Shen [15] studied collisions between a sphere and
a roller in the presence of an oil drop. They found that an
increase in the viscosity of the oil leads to a decrease in the
restitution coefficient, as is also predicted by the theory. Lian,
Adams and Thornton [16] gave a closed-form solution for two
spheres colliding in a liquid, in close agreement with the
elastohydrodynamic theory [12].

More recently, Gondret et al. [17,18] observed the
bouncing motion of spheres dropped onto flat surfaces
immersed in a liquid. Joseph et al. [19] used a pendulum to
perform collisions of swinging spheres with a vertical wall,
again fully immersed in a liquid. These publications affirm the
presence of a critical Stokes number, below which no rebound
is seen. For larger Stokes numbers, the trends in the restitution
data are similar to those predicted by the original elastohy-
drodynamic theory [12].

Davis, Rager and Good [20] observed the restitution
behavior when spheres were dropped through air onto wet
surfaces at impact velocities of approximately 1 m/s–5 m/s.
They gave a closed-form expression for the wet restitution
coefficient:

e ¼ edryð1−Stc=StÞ for St > Stc;
e ¼ 0 for StVStc;

ð4Þ

where e is the ratio of the rebound speed as the particle exits the
liquid layer to the impact speed as the particle enters the liquid
layer on the solid surface, edry is the coefficient of restitution for
a dry collision, and Stc is the critical Stokes number below which
no rebound is seen for wet collisions. Their experimental data are
in good agreement with Eq. (4), though with considerable scatter
that is thought to be due to surface roughness affecting the final
stages of impact. Recently, Kantak and Davis [21] showed that
Eq. (4) can also describe the normal restitution coefficient (ratio
of normal rebound velocity and normal approach velocity) in
oblique impacts. They also developed order-of-magnitude
estimates for predicting the loss of momentum in the tangential
direction and the rotation imparted to a sphere undergoing an
oblique collision with a wet wall. In related work, Joseph and
Hunt [22] examined oblique particle-wall collisions immersed in
a liquid. They introduced a coefficient of sliding friction for
predicting the tangential force in terms of the tangential velocity.
Their model estimates the coefficient of friction as a function of
fluid viscosity, which in turn changes with increasing pressure
and temperature in the fluid gap.

The theoretical works of both Kantak and Davis [21] and
Joseph and Hunt [22] assume a flat profile of the gap between
the sphere and the wall in estimating the tangential fluid force.
A more complete model should include the nonuniform
dynamic deformation profile of the colliding solids, as well as
properly account for cavitation and the finite thickness of the
liquid layer. To meet these needs, the present work provides an
extension of elastohydrodynamic theory [12] to oblique
collisions, including the effects of cavitation, the thin liquid
layer, and the deformation profile on the tangential motion.
Such a model would be useful in large-scale simulations of a
system of wet particles undergoing collisions. However, the
model should ideally be in the form of closed-form expressions,
so that it can be efficiently incorporated into large-scale
simulations, and so an additional purpose of the present work
is to provide such closed-form expressions. Section 2.1 outlines
modification of the theory of Davis et al. [12] for the solution of
the normal component of motion. In Section 2.2, the theoretical
development for the tangential component of motion is given,
followed by the method of numerical solution in Section 2.3.
The results of the numerical solutions are presented in Section
3, and closed-form expressions to match the numerical solution
are provided in Section 4.

2. Theoretical development

Fig. 1 is a schematic of a sphere undergoing an oblique
collision with a surface covered with a thin liquid layer. Kantak
and Davis [21] used scaling arguments and verified experi-
mentally that, at least as a first approximation, the normal
component of motion can be considered to be decoupled from
the tangential component. We use this concept and solve first
for the normal component of motion and then use these results
to solve for the tangential component of motion during an
oblique collision. The solution is presented in terms of a sphere
impacting a plane, but at least the normal component is readily
extended to the collision of two spheres [12].
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