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a  b  s  t  r  a  c  t

Deregulation  of allosteric  inhibition  of  enzymes  is  a challenge  for  strain  engineering  and  has  been
achieved  so  far  primarily  by  random  mutation  and  trial-and-error.  In  this  work,  we  used  aspartokinase,  an
important  allosteric  enzyme  for industrial  amino  acids  production,  to demonstrate  a predictive  approach
that  combines  protein  dynamics  and  evolution  for a  rational  reengineering  of  enzyme  allostery.  Molec-
ular  dynamic  simulation  of  aspartokinase  III  (AK3)  from  Escherichia  coli  and  statistical  coupling  analysis
of  protein  sequences  of  the  aspartokinase  family  allowed  to  identify  a cluster  of  residues  which  are
correlated  during  protein  motion  and  coupled  during  the  evolution.  This  cluster  of  residues  forms  an
interconnected  network  mediating  the  allosteric  regulation,  including  most  of  the  previously  reported
positions  mutated  in  feedback  insensitive  AK3  mutants.  Beyond  these  mutation  positions,  we  have  suc-
cessfully  constructed  another  twelve  targeted  mutations  of  AK3  desensitized  toward  lysine  inhibition.
Six  threonine-insensitive  mutants  of  aspartokinase  I–homoserine  dehydrogenase  I (AK1–HD1)  were  also
created based  on the  predictions.  The  proposed  approach  can  be widely  applied  for  the  deregulation  of
other allosteric  enzymes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Allosteric regulation is one of the fundamental mechanisms
that control almost all cellular metabolisms and gene regulation
(Tsai et al., 2009). Deregulation of allsoteric inhibition has been
a challenge in designing and optimizing metabolic pathways for
the production of target metabolites such as amino acids. So far,
this is achieved almost exclusively by multiple rounds of random
mutation and selection. Despite the successful application of these
approaches for the development of amino acid producers, they have
several disadvantages. For example, undesirable mutations would
be introduced which may  cause growth retardation and by-product
formation. Furthermore, well selectable phenotypes such as resis-
tance to analogs of inhibitors are prerequisite for these processes.
Thus, these approaches cannot be used for some allosteric enzymes
which lack corresponding selectable phenotypes for the mutants. A
rational approach that could be used to guide targeted reengineer-
ing of allosteric enzymes without screening or selection process is
highly desired.
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Recent advances in structural biology together with computa-
tional analysis are opening a new avenue toward understanding
and rational reengineering of allosteric enzymes (Chen et al., 2010).
Two approaches, molecular dynamic simulation (MD) and statisti-
cal coupling analysis (SCA) are especially useful for such purpose
(Estabrook et al., 2005). Allosteric regulation is a dynamic process
and thus MD can provide valuable information for correlated or
anti-correlated motions among different structural elements relat-
ing dynamics to allostery (Smock and Gierasch, 2009). On the other
hand, SCA can reveal correlated mutations of protein family and
help to identify coupled residues contributing to the allosteric com-
munication (Lockless and Ranganathan, 1999; Suel et al., 2003).
Estabrook et al. (2005) demonstrated the usefulness of the com-
bined approach of SCA and MD for identification of amino acid pairs
essential for catalysis. In this work, we  further show that such an
integrated approach is efficient to define a cluster of residues that
are essential for allosteric regulation and can be used for rational
deregulation of allosteric inhibition.

Aspartokinase was  chosen in this work as a model enzyme. It
catalyzes the phosphorylation of aspartate and controls the biosyn-
thesis of several industrially important amino acids such as lysine,
threonine and methionine (Yoshida et al., 2007). In Escherichia coli,
there exist three aspartokinase isozymes. Two  of them, aspartok-
inase I–homoserine dehydrogenase I (AK1–HD1) encoded by thrA
gene and aspartokinase III (AK3) encoded by lysC gene are allosteric
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Fig. 1. Conformational transition of aspartokinase III (AK3) by allosteric regulation
of  lysine. The regulatory domain is shown in red. The N-lobe and C-lobe of the cat-
alytic domain are denoted by blue and cyan, respectively. Residues 352–362 that
showed the largest conformational change are colored in purple. The substrates
(ADP, aspartate) and the inhibitor (lysine) are represented by CPK models. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)

enzymes and especially important for lysine and threonine pro-
duction. AKI–HDI is allosterically inhibited by threonine and its
synthesis is repressed by threonine plus leucine (Bearer and Neet,
1978) while AK3 is inhibited and repressed by lysine (Kotaka et al.,
2006). In the last fifty years, considerable efforts have been made
to deregulate these two  enzymes from allosteric inhibition by ran-
dom mutation and selection of mutants resistant to lysine analogue
S-(2-aminoethyl)-L-cysteine (AEC) (Kikuchi et al., 1999; Miyata
et al., 2001), or threonine analogue �-amino-�-hydroxyvaleric acid
(AHV) (Lee et al., 2003). However, only a limit number of positive
mutations have been identified so far, especially for AK1–HD1.

The crystal structures of AK3 complex with substrates (R-state)
or lysine (T-state) have been solved (Kotaka et al., 2006). Lysine
binding induces a large conformational change of AK3 (Fig. 1). AK3
consists of an N-terminal catalysis domain and a C-terminal regu-
latory domain. The regulatory domain possesses two motifs called
as ACT domains (Chipman and Shaanan, 2001) which are respon-
sible for the lysine binding. Mapping of the reported mutations
into the three-dimensional structure of AK3 enables us to evalu-
ate their roles for allosteric regulation. Interestingly, these mutated
residues are located not only within lysine binding sites but also in
other regions of the protein (Table 1 and Fig. 4A). This motivates
us to carry out a more systematic analysis of the whole structure
of AK3 to identify residues which may  form an interacting network
responsible for the allosteric regulaltion. Specific residues of this
interacting network should be evaluated as potential targets for
deregulation of the allostery.

2. Materials and methods

2.1. Molecular dynamic simulation (MD) and cross-correlation
analysis

The starting structure for the MD  simulation of AK3 with lysine
was based on the crystal structure of T-state AK3 (PDB code

2J0X). Aspartate and other ligands were removed from the struc-
ture and the missing residues were repaired using MODELLER
9v5 (http://salilab.org/modeller/). For the MD  simulation of AK3
without lysine, lysine was also removed from the previous struc-
ture. Dynamic trajectories were computed using AMBER 10.0 with
parm99SB force field (Duan et al., 2003). Protein was solvated in a
box of TIP3P water molecules (Jorgensen, 1981) with the minimal
distance of 1.5 nm from the protein to the box wall. Na+ ions were
added to neutralize the systems. 1500 steps of steepest-descent
energy minimization and 2500 steps Newton–Raphson minimiza-
tion were performed before the MD simulation. The systems were
then heated to 300 K, followed by 500 ps equilibration and 10 ns MD
simulations. The particle mesh Ewald method (Darden et al., 1993)
was used to calculate the long-range electrostatics interactions.
Non-bonded interactions were cutoff at 12.0 Å and updated every
25 steps. The SHAKE method (Ryckaert et al., 1977) was  applied
to constrain all covalent bonds involving H atoms. Each simulation
was  coupled to a 300 K thermal bath at 1.0 atm of pressure by apply-
ing the algorithm of Berendsen et al. (1984).  The temperature and
pressure coupling parameters were set as 0.2 and 0.05 ps, respec-
tively. The integration step was  set to 2 fs and the coordinates were
saved every 0.1 ps, giving a total number of 100,000 structures for
each trajectory.

Cross-correlation analysis of the trajectories from 2 ns to 10 ns
was  performed to evaluate the dynamical correlation between any
two  residues. The cross-correlation coefficient is defined as C(ij) =(〈
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, where �ri and �rj denotes

the displacement vectors of residue i and j and the angle brackets
denote ensemble average. The coordinate sets of 2 ns were used as
the references. C(ij) = 1 indicates that the motions of two residues
are completely correlated (same phase) while C(ij) = − 1 indicates
that the motions of two residues are completely anti-correlated
(opposite phase). The extent of correlation was calculated using
AMBER10.0.

2.2. Multiple sequence alignment (MSA) and statistical coupling
analysis (SCA)

Sequences of the aspartokinase family proteins were col-
lected from the UniRef90 database in UniProt Knowledgebase
(http://www.uniprot.org/). Any sequence sharing >90% similarity
to another sequence was  removed in order to get a diverse distribu-
tion of samples. The sequences were aligned with MUSCLE (Edgar,
2004) followed by structure-guided manual adjustment (Doolittle,
1996). The sequence positions with gap frequency higher than 20%
were deleted. The final alignment consisted of 340 sequences and
424 positions.

SCA measures the evolutional correlation between any two
residue positions Cab
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), where f a
i

and f b
j

denote the

observed frequency of amino acid a and b at position i and j. f ab
ij

rep-
resents the joint frequency of having a at position i and b at position
j, and �i and �j are the positional conservation-based weights. The
detailed procedure for the SCA calculation has been described else-
where (Halabi et al., 2009; Suel et al., 2003). The SCA matrix was
calculated using the METLAB script derived from the publication of
Halabi et al. (2009).

2.3. The SCA·MD matrix

SCA·MD matrix is to measure the positional correlation based
on both evolutional and dynamical contribution. It was created by
multiplying the individual elements of the SCA matrix with the cor-
responding elements of the truncated cross-correlation matrix of
MD trajectory of AK3 with lysine.
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