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a b s t r a c t

Improving the rate of recombinant protein production in Chinese hamster ovary (CHO) cells is an impor-
tant consideration in controlling the cost of biopharmaceuticals. We present the first predictive model
of productivity in CHO bioprocess culture based on gene expression profiles. The dataset used to con-
struct the model consisted of transcriptomic data from 70 stationary phase, temperature-shifted CHO
production cell line samples, for which the cell-specific productivity had been determined. These sam-
ples were utilised to investigate gene expression over a range of high to low monoclonal antibody and
fc-fusion-producing CHO cell lines. We utilised a supervised regression algorithm, partial least squares
(PLS) incorporating jackknife gene selection, to produce a model of cell-specific productivity (Qp) capable
of predicting Qp to within 4.44 pg/cell/day root mean squared error in cross model validation (RMSECMV).
The final model, consisting of 287 genes, was capable of accurately predicting Qp in a further panel
of 10 additional samples which were incorporated as an independent validation. Several of the genes
constituting the model are linked with biological processes relevant to protein metabolism.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cell and process engineering approaches to improve produc-
tivity in bioreactors have largely focussed on reactor design and
culture strategies such as clonal selection, stability, medium for-
mulation, culture temperature and cell engineering for controlled
proliferation and increased resistance to apoptosis (Altamirano
et al., 2000; Butler, 2005; Prentice et al., 2007; Wurm, 2004). Using
this approach, key cell line characteristics, including cell growth
rate, achievable cell densities and correct product processing are
identified only following a lengthy labour-intensive screening pro-
cess. To complement these strategies, previous attempts have been
made to modify or improve the performance of these lines in
the bioreactor using cellular engineering strategies (reviewed in
Mohan et al., 2008). However, these studies have demonstrated
only incremental improvements in productivity and the cellular
processes underpinning Qp remains poorly understood in Chinese
hamster ovary (CHO) and other bioprocess-relevant cell lines.

The development of expression profiling methodologies such
as microarrays and proteomics offer the prospect of examining the
molecular phenotypes underlying productivity in CHO and their
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application in bioprocess research has already been extensively
reviewed (Griffin et al., 2007). Previous microarray expression pro-
filing studies focussing on productivity in CHO (Doolan et al., 2008;
Schaub et al., 2010; Trummer et al., 2008; Kantardjieff et al., 2010;
Yee et al., 2007) and in the commercially used mouse myeloma
NS0 cell line (Charaniya et al., 2009; Khoo et al., 2007; Seth et al.,
2007) have identified several crucial pathways and processes.
These microarray-based productivity studies have also been com-
plemented by proteomics studies in CHO (Carlage et al., 2009;
Meleady et al., 2008; Nissom et al., 2006) and NS0 (Seth et al., 2007;
Smales et al., 2004; Alete et al., 2005; Dinnis et al., 2006).

To date, profiling studies in CHO have been characterised by
relatively small numbers of samples (typically < 20) compared in
a case/control format. Interesting genes and protein candidates
are generally prioritised via the traditional paradigm of differen-
tial expression (i.e. fold change). A significant drawback of this
approach includes the selection of an appropriate threshold (con-
sidering the inherent noisy nature of microarrays) resulting in too
few or too many genes identified and providing inconsistent com-
parison with studies on similar biological systems. This limitation is
further compounded by the observation that changes in productiv-
ity levels are usually accompanied by only modest changes in gene
expression levels (Smales et al., 2004; Yee et al., 2009). Larger sam-
ple numbers in combination with more sophisticated algorithms
can therefore make a significant contribution to identifying the
molecular mechanisms underpinning productivity in CHO.
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Multivariate statistics and machine learning algorithms for clas-
sification and regression allow relationships between genes to be
considered and have previously been advocated over univariate
gene selection methods (Boulesteix and Strimmer, 2007). Par-
tial least squares (PLS) is a statistical modelling technique closely
related to principal component analysis (PCA) and is used to con-
struct predictive models for complex multidimensional datasets.
PLS components, known as latent variables (LVs), are derived
from linear combinations of the original variables to maximise
the covariance between a matrix of independent variables (e.g.
gene expression) and dependent variable(s) (e.g. productivity). By
retaining only those LVs containing the majority of information on
the relationship between predictor and response variables (thus
removing a substantial amount of noise and measurement error)
a model can then be formed between these LVs and cell-specific
productivity. Detailed treatments of the PLS algorithm have been
previously described (Martens and Naes, 1989).

Previous examples of PLS predictive model generation from
microarrays include regression (Gidskehaug et al., 2007; Huang
et al., 2004; Misra et al., 2007), the development of models for
classification (Aaroe et al., 2010; Nguyen and Rocke, 2002a) and
proportional hazard models for survival analysis (Nguyen and
Rocke, 2002b). Apart from microarrays, the technique is utilised
across a variety of fields and has previously been applied to vari-
ous aspects of bioprocessing including mass spectrometry-based
proteomic profiling, process monitoring and process analytical
technology (PAT) (Sellick et al., 2010; Stansfield et al., 2007;
Thomassen et al., 2010).

In this paper, we construct a regression model using the PLS
algorithm to capture the relationship between gene expression and
a quantitative phenotypic variable (cell-specific productivity). We
aim to produce a model for prediction of Qp from gene expression
measurements with a potential application in bioprocess develop-
ment. The use of a gene selection routine coupled with rigorous
statistical validation was incorporated to reduce PLS model com-
plexity and decrease the error rate. The algorithm may also provide
a vehicle for the identification of subsets of genes relevant to the
biology underlying productivity of recombinant proteins in CHO.
This work represents one of the largest studies of CHO transcrip-
tomic datasets published to date.

2. Materials and methods

2.1. Determination of cell-specific productivity

The concentration of recombinant protein product in con-
ditioned media samples (volumetric titre) was determined by
Protein-A HPLC. Cell viability was determined using the trypan blue
dye-exclusion viability assay and hemocytometer counting (for
shake flask samples) or a Cedex Automated Cell Culture Analyzer
(Roche Innovatis) (for bioreactor samples). Cell specific productiv-
ity was determined as shown below.

Qp(pg/cell/day)

=
[

titre 2 − titre 1
(density 2 − density 1)

]
× daily growth rate (1)

where

daily growth rate

= (ln(density 2) − ln(density 1))/(time 2 − time 1)
24

2.2. Cell line selection and experimental design

A total of 80 fed-batch, temperature-shifted CHO production
cell line samples displaying a range of cell-specific productivity
values (0.81–50.4 pg protein/cell/day) were selected for transcrip-
tional profiling using a proprietary (Wye2aHamster) CHO-specific
affymetrix microarray. All cell line samples were grown in serum-
free suspension culture in the temperature-shifted range of 29.5 ◦C
to 31 ◦C (culture temperature shift time-point varied between 24
and 72 h according to process design) and were collected during the
stationary growth phase (5–10 days) at the following time-points:
Day 5 (23 samples), Day 7 (42 samples), Day 8 (7 samples) and
Day 10 (8 samples). The entire sample set comprised 42 CHO DUX
and 38 CHO K1 samples, from 10 production cell lines expressing a
variety of monoclonal antibody (60 samples) and fc-fusion protein
products (20 samples). 18 of the samples were isolated from a total
of 14 shake flasks (11 of which were carefully maintained to a pH
setpoint using CO2 and base addition as required); the remaining
samples were isolated from 40 individual bioreactor cultures. The
sample set was split into 70 microarrays for PLS model construction
and validation (calibration data). 10 samples from 5 CHO DUX and
5 CHO K1 cultures producing monoclonal antibody and fc-fusion
proteins were held back from model building and gene selection to
serve as an independent test set evaluation (test data).

2.3. Microarray analysis and data preprocessing

The methods and criteria used for total RNA purification,
cRNA sample processing and hybridisation to hamster microarrays
have been previously described (Doolan et al., 2008). The study
presented here utilises a proprietary WyeHamster2a oligonu-
cleotide microarray, which has been described previously (Doolan
et al., 2008), representing an estimated 10–15% of the CHO
transcriptome. All microarray data were pre-processed in the
statistical software environment R (www.r-project.org) and the
aroma.affymetrix package using the robust multichip average
(RMA) algorithm (Bolstad et al., 2003; Irizarry et al., 2003a,b).

2.4. Partial least squares implementation

PLS model construction and jackknife variable selection was car-
ried out within R using the ‘pls’ package (Mevik and Wehrens, 2007).
Cross model validation was implemented using a script written
in-house (available on request).

2.5. Jackknife gene selection

The elimination of genes which do not contribute significantly
to the model should simplify and improve the accuracy of PLS and
possibly reveal biologically important genes related to cell-specific
productivity. During the construction of the PLS model, each gene
is interrogated within the inner loop of model validation (Fig. 1) as
to its importance during the model building process. The resam-
pling method known as ‘jackknifing’ (JK) (Efron and Stein, 1981)
was employed to assess the significance of variables and to remove
uninformative or “noisy” genes which have no contribution to the
final model. The selection of important genes from the analysis is
achieved by initially considering the entire complement of the array
and constructing a model. Each PLS regression coefficient is per-
turbed and its approximate “significance” determined using a t-test
(as the distribution of PLS regression coefficients and the degrees
of freedom are unknown, it is recommended to treat the result-
ing p-value as measure of non-significance (Mevik and Wehrens,
2007)). The least “significant” gene (i.e. the gene with the largest
p-value) in the model is eliminated from the dataset. The backward
elimination of genes from the model continues until all remaining
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