

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Proceedings of the Combustion Institute

Proceedings of the Combustion Institute 34 (2013) 857-863

www.elsevier.com/locate/proci

Hydrodynamic aspects of end-gas autoignition

Leonid Kagan*, Gregory Sivashinsky

Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Available online 2 July 2012

Abstract

Within the small-Mach-number approximation, employing an appropriate scale-separation procedure, a reduced zero-dimensional model for deflagrative combustion occurring in a closed vessel is formulated and analyzed. It is shown that progressive compression of the unburned gas (end-gas) induced by the burned gas thermal expansion may result in end-gas autoignition, provided the vessel is large enough. A theoretical interpretation is given to the effect of the flame velocity reversal occurring prior to the autoignition event.

© 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: End-gas autoignition; Knocking combustion; Confined burning

1. Introduction

When deflagrative combustion takes place within a confining vessel the unburned gas is progressively compressed owing to thermal expansion of the burned gas. The resulting buildup of the unburned gas (end-gas) reaction-rate may lead, under appropriate conditions, to its autoignition and detonation. The end-gas autoignition is of direct relevance to the familiar knock phenomenon occurring in spark-ignition engines [1,2].

In the one-dimensional geometry (planar, cylindrical or spherical) the closed vessel combustion is one of the most basic and relatively tractable problems of the theory, and there is a substantial volume of literature on the subject [3-10]. The present paper is concerned with some salient features of the problem which somehow escaped proper attention. Specifically, it has long been noticed that the end-gas burning is often

* Corresponding author.

accompanied by the reversal of the gas flow, and prior to the autoignition event the flame front is halted and even thrown backward [11-13]. As shown below both effects stem from the end-gas reactivity, and may be successfully tackled theoretically under quite general premises.

The current study is an extension of our recent discussion of the end-gas autoignition based on the small-heat-release approximation, and where the hydrodynamic aspects of the problem stay beyond the scope of the model employed [14].

The small-Mach-number approach discussed below, could presumably be used also to tackle end-charge autoignition in confined solid explosives (Section 8).

2. Small-Mach-number approximation

Since deflagrative combustion is generally strongly subsonic it may be successfully described within the framework of the small-Mach-number approximation. In this limit the end-gas autoig nition (transition to developing detonation) is expected to manifest itself as a drastic amplification

E-mail addresses: kaganleo@post.tau.ac.il (L. Kagan), grishas@post.tau.ac.il (G. Sivashinsky).

^{1540-7489/}\$ - see front matter © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.proci.2012.06.038

of the end-gas temperature and the mass burning velocity. In this paper the discussion is restricted primarily to the geometrically simplest case of a planar flame confined by two impermeable walls (Fig. 1). For the small-Mach-number limit considered here the pressure is instantaneously equalized throughout the vessel and so is a function of time alone. In suitably chosen units the set of governing equations then reads [7],

heat,

$$\hat{\rho}\left(\frac{\partial \widehat{T}}{\partial \widehat{t}} + \widehat{u}\frac{\partial \widehat{T}}{\partial \widehat{x}}\right) = \varepsilon \frac{\partial^2 \widehat{T}}{\partial \widehat{x}^2} + \frac{\gamma - 1}{\gamma} \frac{d\widehat{P}}{d\widehat{t}} + \frac{1}{\varepsilon}(1 - \sigma)\widehat{W}$$
(1)

mass fraction,

$$\hat{\rho}\left(\frac{\partial\widehat{C}}{\partial\hat{t}} + \hat{u}\frac{\partial\widehat{C}}{\partial\hat{x}}\right) = \frac{\varepsilon}{Le}\frac{\partial^2\widehat{C}}{\partial\hat{x}^2} - \frac{1}{\varepsilon}\widehat{W}$$
(2)

continuity,

$$\frac{\partial \hat{\rho}}{\partial \hat{t}} + \frac{\partial (\hat{\rho}\hat{u})}{\partial \hat{x}} = 0 \tag{3}$$

state,

$$\widehat{P} = \widehat{\rho}\widehat{T}, \quad \widehat{P} = \widehat{P}(\widehat{t})$$
 (4)

reaction rate,

$$\widehat{W} = Z\widehat{\rho}\widehat{C}\exp[N(1-\widehat{T}^{-1})]$$
(5)

Here $\widehat{P} = P/P_0$ is the scaled pressure in units of the initial pressure, P_0 ; $\hat{C} = C/C_0$, scaled mass fraction of the deficient reactant in units of its initial value, C_0 ; $\hat{T} = T/T_b$, scaled temperature in units of $T_b = T_0 + QC_0/c_p$, adiabatic temperature of burned gas under constant pressure; Q, heat release; T_0 , initial temperature; c_p , c_v , specific heats; $\sigma = T_0/T_b$; $\gamma = c_p/c_v$; $\hat{\rho} = \rho/\rho_b$, scaled density in units of the burned gas density $\rho_b = P_0/$ $(c_p - c_v)T_b$; $\hat{u} = u/u_b$, scaled flow velocity in units of u_b , velocity of the open-space (isobaric) deflagration relative to the burned gas, and regarded as a prescribed parameter; $N = T_a/T_b$, scaled activation temperature (energy); Le, Lewis number; $Z = \frac{1}{2}Le^{-1}N^2(1-\sigma)^2$, normalizing factor to ensure that at $N \gg 1$ the scaled deflagration velocity relative to the burned gas is close to unity;

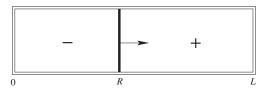


Fig. 1. Diagram for the 1D deflagrative combustion in a closed vessel, $0 \le x \le L$. Bold line corresponds to the reaction zone located at x = R(t); (+) and (-) mark the unburned and burned gas, respectively.

 $\hat{x} = x/L$, $\hat{t} = u_b t/L$, scaled spatio-temporal coordinates; *L*, width of the vessel; $\varepsilon = l_{th}/L$; $l_{th} = D_{th,b}/u_b$, flame width; $D_{th,b} = D_{th}(T_b)$, thermal diffusivity of the mixture; $\hat{W} = (D_{th,b}/C_0\rho_b u_b^2)W$, scaled reaction rate. The reaction rate (*W*) is assumed to be one-step, irreversible, first-order, and with the Arrhenius temperature dependence.

Equations (1)–(4) are considered over the interval $0 < \hat{x} < 1$ (interior of the vessel), and subjected to the following set of conditions:

boundary conditions,

$$\partial \hat{T}(0,\hat{t})/\partial \hat{x} = 0, \quad \partial C(0,\hat{t})/\partial \hat{x} = 0, \quad \hat{u}(0,\hat{t}) = 0$$
(6)

$$\partial \widehat{T}(1,\hat{t})/\partial \hat{x} = 0, \quad \partial \widehat{C}(1,\hat{t})/\partial \hat{x} = 0, \quad \hat{u}(1,\hat{t}) = 0$$
(7)

initial conditions,

$$\widehat{T}(\hat{x},0) = \sigma + (1-\sigma) \exp(-\hat{x}/l), \quad \widehat{C}(\hat{x},0) = 1,$$

$$\widehat{P}(\hat{x},0) = 1, \quad \hat{\rho}(\hat{x},0) = 1/\widehat{T}(\hat{x},0), \quad \hat{u}(\hat{x},0) = 0$$
(8)

3. Thin flame limit

The model (1)–(5) involves two natural small parameters ε and N^{-1} , which allow for some further simplifications.

In deflagrative combustion the width of the reactive-diffusive zone, by definition, is of the order of ε . Let $\hat{x} = \hat{R}(\hat{t})$ be a site of the deflagration front (reaction zone). Then beyond the reactive-diffusive layer $\hat{x} - \hat{R}(\hat{t}) \sim \varepsilon$ (outer picture) the profiles of \hat{T} , \hat{C} , \hat{u} , $\hat{\rho}$ are expected to be discontinuous:

$$\widehat{T} = \widehat{T}_{-}(\hat{x}, \hat{t}), \quad \widehat{T}_{+}(\hat{t}); \quad \widehat{C} = \widehat{C}_{-}(=0), \quad \widehat{C}_{+}(\hat{t});
\widehat{u} = \widehat{u}_{-}(\hat{x}, \hat{t}), \quad \widehat{u}_{+}(\hat{x}, \hat{t}); \quad \widehat{\rho} = \widehat{\rho}_{-}(\hat{x}, \hat{t}), \quad \widehat{\rho}_{+}(\hat{t})$$
(9)

The subscripts -, + mark the burned and unburned gas, respectively. In view of the initial conditions (8), elements of the gas that have not crossed the reaction zone are thermodynamically identical, that is \hat{T}_+ , \hat{C}_+ , $\hat{\rho}_+$ are \hat{x} -independent [7]. For the burned gas interval ($0 < \hat{x} < \hat{R}$) where $\hat{C} = 0$, one may write,

$$\hat{\rho}_{-}\left(\frac{\partial \widehat{T}_{-}}{\partial \widehat{t}} + \widehat{u}_{-}\frac{\partial \widehat{T}_{-}}{\partial \widehat{x}}\right) = \frac{\gamma - 1}{\gamma}\frac{d\widehat{P}}{d\widehat{t}}$$
(10)

$$\frac{\partial \hat{\rho}_{-}}{\partial \hat{t}} + \frac{\partial (\hat{\rho}_{-} \hat{u}_{-})}{\partial \hat{x}} = 0$$
(11)

$$\widehat{P} = \widehat{\rho}_{-}\widehat{T}_{-}, \quad \widehat{P} = \widehat{P}(\widehat{t})$$
(12)

Similarly, for the reactive gas interval ($\hat{R} < \hat{x} < 1$), where $\partial \hat{C}_{+} / \partial \hat{x} = \partial \hat{T}_{+} / \partial \hat{x} = \partial \hat{\rho}_{+} / \partial \hat{x} = 0$, Download English Version:

https://daneshyari.com/en/article/241192

Download Persian Version:

https://daneshyari.com/article/241192

Daneshyari.com