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Abstract

Within the small-Mach-number approximation, employing an appropriate scale-separation procedure,
a reduced zero-dimensional model for deflagrative combustion occurring in a closed vessel is formulated
and analyzed. It is shown that progressive compression of the unburned gas (end-gas) induced by the
burned gas thermal expansion may result in end-gas autoignition, provided the vessel is large enough. A
theoretical interpretation is given to the effect of the flame velocity reversal occurring prior to the autoig-

nition event.
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1. Introduction

When deflagrative combustion takes place
within a confining vessel the unburned gas is pro-
gressively compressed owing to thermal expansion
of the burned gas. The resulting buildup of the
unburned gas (end-gas) reaction-rate may lead,
under appropriate conditions, to its autoignition
and detonation. The end-gas autoignition is of
direct relevance to the familiar knock phenome-
non occurring in spark-ignition engines [1,2].

In the one-dimensional geometry (planar,
cylindrical or spherical) the closed vessel combus-
tion is one of the most basic and relatively tracta-
ble problems of the theory, and there is a
substantial volume of literature on the subject
[3-10]. The present paper is concerned with some
salient features of the problem which somehow
escaped proper attention. Specifically, it has long
been noticed that the end-gas burning is often
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accompanied by the reversal of the gas flow, and
prior to the autoignition event the flame front is
halted and even thrown backward [11-13]. As
shown below both effects stem from the end-gas
reactivity, and may be successfully tackled theo-
retically under quite general premises.

The current study is an extension of our recent
discussion of the end-gas autoignition based on
the small-heat-release approximation, and where
the hydrodynamic aspects of the problem stay
beyond the scope of the model employed [14].

The small-Mach-number approach discussed
below, could presumably be used also to tackle
end-charge autoignition in confined solid explo-
sives (Section 8).

2. Small-Mach-number approximation

Since deflagrative combustion is generally
strongly subsonic it may be successfully described
within the framework of the small-Mach-number
approximation. In this limit the end-gas autoig
nition (transition to developing detonation) is
expected to manifest itself as a drastic amplification
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of the end-gas temperature and the mass burning
velocity. In this paper the discussion is restricted
primarily to the geometrically simplest case of a
planar flame confined by two impermeable walls
(Fig. 1). For the small-Mach-number limit consid-
ered here the pressure is instantaneously equalized
throughout the vessel and so is a function of time
alone. In suitably chosen units the set of governing
equations then reads [7],
heat,
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Here P = P/P, is the scaled pressure in units of
the initial pressure, Py; C = C/Cy, scaled mass
fraction of the deficient reactant in units of its ini-
tial value, Co; T = T/T}, scaled temperature in
units of 7), = T + QCo/c,, adiabatic temperature
of burned gas under constant pressure; Q, heat
release; Ty, initial temperature; c,, c,, specific
heats; 0 = To/T»s; y = c,/co; p = p/p,, scaled den-
sity in units of the burned gas density p, = Py/
(¢p — ¢o)Tp; @t = u/uy, scaled flow velocity in units
of u,, velocity of the open-space (isobaric) defla-
gration relative to the burned gas, and regarded
as a prescribed parameter; N=T,/T,, scaled
activation temperature (energy); Le, Lewis num-
ber; Z =1Le”'N*(1 - ¢)°, normalizing factor to
ensure that at N > 1 the scaled deflagration veloc-
ity relative to the burned gas is close to unity;
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Fig. 1. Diagram for the 1D deflagrative combustion in a
closed vessel, 0 <x < L. Bold line corresponds to the
reaction zone located at x = R(¢); (+) and (—) mark the
unburned and burned gas, respectively.

% =x/L, 1 = uyt/L, scaled spatio-temporal coordi-
nates; L, width of the vessel; ¢ = I;/L; I, = D/
up, flame width; Dy, = D(T}), thermal diffusiv-
ity of the mixture; W = (Dyp/Coppui) W, scaled
reaction rate. The reaction rate (W) is assumed
to be one-step, irreversible, first-order, and with
the Arrhenius temperature dependence.

Equations (1)—(4) are considered over the inter-
val 0 < ¥ < 1 (interior of the vessel), and subjected
to the following set of conditions:

boundary conditions,

aT(0,1)/0x =0, 0C(0,7)/0x =0, @(0,7)=0
(6)
oT(1,7)/0x =0, 0C(1,1)/0x =0, a(1,i)=0
(7
initial conditions,
T(x,0) =0+ (1 —o)exp(—%/l), C(%,0)=1,

(8)
P(,0)=1, p0)=1/T(x0), a0 =0

Here / is the length-scale of the initiation hot-spot.

3. Thin flame limit

The model (1)—(5) involves two natural small
parameters ¢ and N, which allow for some fur-
ther simplifications.

In deflagrative combustion the width of the
reactive-diffusive zone, by definition, is of the
order of . Let X = R(?) be a site of the deflagra-
tion front (reaction zone). Then beyond the reac-
tive-diffusive layer ¥ — R(7) ~ ¢ (outer picture) the
profiles of T, C, &, p are expected to be
discontinuous:
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The subscripts —, + mark the burned and un-
burned gas, respectively. In view of the initial con-
ditions (8), elements of the gas that have not
crossed the reaction zone are thermodynamically
identical, thatis 7', C,, p. are X-independent [7].
__ For the burned gas interval (0 < x < R) where
C =0, one may write,
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Similarly, for the reactive gas interval R<x< 1),
where 0C, /0x = 0T, /0x = 9p, /0x =0,
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