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Abstract

Within the small-Mach-number approximation, employing an appropriate scale-separation procedure,
a reduced zero-dimensional model for deflagrative combustion occurring in a closed vessel is formulated
and analyzed. It is shown that progressive compression of the unburned gas (end-gas) induced by the
burned gas thermal expansion may result in end-gas autoignition, provided the vessel is large enough. A
theoretical interpretation is given to the effect of the flame velocity reversal occurring prior to the autoig-
nition event.
� 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

When deflagrative combustion takes place
within a confining vessel the unburned gas is pro-
gressively compressed owing to thermal expansion
of the burned gas. The resulting buildup of the
unburned gas (end-gas) reaction-rate may lead,
under appropriate conditions, to its autoignition
and detonation. The end-gas autoignition is of
direct relevance to the familiar knock phenome-
non occurring in spark-ignition engines [1,2].

In the one-dimensional geometry (planar,
cylindrical or spherical) the closed vessel combus-
tion is one of the most basic and relatively tracta-
ble problems of the theory, and there is a
substantial volume of literature on the subject
[3–10]. The present paper is concerned with some
salient features of the problem which somehow
escaped proper attention. Specifically, it has long
been noticed that the end-gas burning is often

accompanied by the reversal of the gas flow, and
prior to the autoignition event the flame front is
halted and even thrown backward [11–13]. As
shown below both effects stem from the end-gas
reactivity, and may be successfully tackled theo-
retically under quite general premises.

The current study is an extension of our recent
discussion of the end-gas autoignition based on
the small-heat-release approximation, and where
the hydrodynamic aspects of the problem stay
beyond the scope of the model employed [14].

The small-Mach-number approach discussed
below, could presumably be used also to tackle
end-charge autoignition in confined solid explo-
sives (Section 8).

2. Small-Mach-number approximation

Since deflagrative combustion is generally
strongly subsonic it may be successfully described
within the framework of the small-Mach-number
approximation. In this limit the end-gas autoig
nition (transition to developing detonation) is
expected to manifest itself as a drastic amplification
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of the end-gas temperature and the mass burning
velocity. In this paper the discussion is restricted
primarily to the geometrically simplest case of a
planar flame confined by two impermeable walls
(Fig. 1). For the small-Mach-number limit consid-
ered here the pressure is instantaneously equalized
throughout the vessel and so is a function of time
alone. In suitably chosen units the set of governing
equations then reads [7],
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state,bP ¼ q̂bT ; bP ¼ bP ð̂tÞ ð4Þ
reaction rate,bW ¼ Zq̂bC exp½Nð1� bT �1Þ� ð5Þ

Here bP ¼ P=P 0 is the scaled pressure in units of
the initial pressure, P 0; bC ¼ C=C0, scaled mass
fraction of the deficient reactant in units of its ini-
tial value, C0; bT ¼ T=T b, scaled temperature in
units of Tb = T0 + QC0/cp, adiabatic temperature
of burned gas under constant pressure; Q, heat
release; T0, initial temperature; cp, cv, specific
heats; r ¼ T 0=T b; c ¼ cp=cv; q̂ ¼ q=qb, scaled den-
sity in units of the burned gas density qb = P0/
(cp � cv)Tb; û ¼ u=ub, scaled flow velocity in units
of ub, velocity of the open-space (isobaric) defla-
gration relative to the burned gas, and regarded
as a prescribed parameter; N = Ta/Tb, scaled
activation temperature (energy); Le, Lewis num-
ber; Z ¼ 1

2
Le�1N 2ð1� rÞ2, normalizing factor to

ensure that at N� 1 the scaled deflagration veloc-
ity relative to the burned gas is close to unity;

x̂ ¼ x=L, t̂ ¼ ubt=L, scaled spatio-temporal coordi-
nates; L, width of the vessel; e = lth/L; lth = Dth,b/
ub, flame width; Dth,b = Dth(Tb), thermal diffusiv-
ity of the mixture; bW ¼ ðDth;b=C0qbu2

bÞW , scaled
reaction rate. The reaction rate (W) is assumed
to be one-step, irreversible, first-order, and with
the Arrhenius temperature dependence.

Equations (1)–(4) are considered over the inter-
val 0 < x̂ < 1 (interior of the vessel), and subjected
to the following set of conditions:

boundary conditions,
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initial conditions,bT ðx̂; 0Þ ¼ rþ ð1� rÞ expð�x̂=lÞ; bCðx̂; 0Þ ¼ 1;

ð8ÞbP ðx̂; 0Þ ¼ 1; q̂ðx̂; 0Þ ¼ 1=bT ðx̂; 0Þ; ûðx̂; 0Þ ¼ 0

Here l is the length-scale of the initiation hot-spot.

3. Thin flame limit

The model (1)–(5) involves two natural small
parameters e and N�1, which allow for some fur-
ther simplifications.

In deflagrative combustion the width of the
reactive-diffusive zone, by definition, is of the
order of e. Let x̂ ¼ bRð̂tÞ be a site of the deflagra-
tion front (reaction zone). Then beyond the reac-
tive-diffusive layer x̂� bRð̂tÞ � e (outer picture) the
profiles of bT , bC , û, q̂ are expected to be
discontinuous:bT ¼ bT �ðx̂; t̂Þ; bT þð̂tÞ; bC ¼ bC�ð¼ 0Þ; bCþð̂tÞ;
û ¼ û�ðx̂; t̂Þ; ûþðx̂; t̂Þ; q̂ ¼ q̂�ðx̂; t̂Þ; q̂þð̂tÞ

ð9Þ
The subscripts �, + mark the burned and un-
burned gas, respectively. In view of the initial con-
ditions (8), elements of the gas that have not
crossed the reaction zone are thermodynamically
identical, that is bT þ, bCþ, q̂þ are x̂-independent [7].

For the burned gas interval (0 < x̂ < bR) wherebC ¼ 0, one may write,
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bP ¼ q̂�bT �; bP ¼ bP ð̂tÞ ð12Þ

Similarly, for the reactive gas interval (bR < x̂ < 1),

where @ bCþ=@x̂ ¼ @bT þ=@x̂ ¼ @q̂þ=@x̂ ¼ 0,
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Fig. 1. Diagram for the 1D deflagrative combustion in a
closed vessel, 0 < x < L. Bold line corresponds to the
reaction zone located at x = R(t); (+) and (�) mark the
unburned and burned gas, respectively.
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