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ARTICLE INFO ABSTRACT

Artif{e history: Mono-functional catalytic materials are used for many types of chemical transformations, but are tedious
Received 29 JU1YA2015 for delivering products from multiple-step reactions required for the valorization of biomass. An emerg-
Accepted 20 April 2016 ing trend is to integrate catalytic transformations, reaction engineering and product separation into a

Available online 17 May 2016 single operation, wherein catalyst design is considered as the key approach to develop efficient, low energy

and environmentally-friendly reaction systems. Bifunctional solid catalysts open a door for carrying out
domino/cascade- and tandem/sequential-type reactions in a single pot, for which the number of isola-
tion or purification steps can be lessened or eliminated so that removal of unwanted by-products becomes
unnecessary. This review introduces bifunctional materials used in one-pot multiple transformations of
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One-pot reaction biomass into biofuels and related chemicals. Emphasis is placed on the assessment of the bifunctionality
Platform chemicals of catalytic materials, including Bronsted-Lewis acid, acid-base, and metal particles-acid or base bi-
Nanotechnology functional catalysts with some discussion being on combined catalytic systems with electrochemical, chemo-

enzymatic and photochemical methods. Plausible reaction mechanisms for key pathways are shown.
Relevant auxiliaries to boost catalytic activity and product selectivity, such as reaction media, heating
modes and morphological properties of the catalytic materials are analyzed. Use of appropriate bifunc-
tional catalytic materials provides many opportunities for design of highly efficient reaction systems and
simplified processing for producing biofuels and chemicals from lignocellulosic biomass.
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1. Introduction

Lignocelluloses composed of chitosan, lipids, microalgae,
macroalgae, polyols or polysaccharide and lignin units are the dom-
inant biomass resources in the environment [1]. Microbial,
thermochemical, and chemical/catalytic processes are three main
approaches of converting biomass into energy, biofuels or chemi-
cals [2]. Enzyme-mediated catalytic processes are the most common
way to produce bioethanol, butanol and biodiesel, in which pre-
treatment and post-treatment steps are used to remove compounds
toxic to the microorganisms. Thermal processing of biomass gives
syngas via steam gasification by partial oxidation at temperatures
from ~800 to 1000 °C [3] or bio-oil via fast pyrolysis with or without
catalyst at temperatures of ~500 °C [4,5]. Efficient processes for the

catalytic upgrading of both syngas and bio-oil to transportation fuels
are in high demand [6,7]. At lower reaction temperatures (ca. 300 °C),
thermal processing of biomass with catalytic methods offers the pos-
sibility of selectively yielding a narrow range of products and to
reduce the energy requirements of the transformations [8-10]. Tra-
ditional catalytic strategies have relied mainly on mono-functional
materials for chemical transformations and while they are able to
deliver the desired products for a wide range of substrates, they lack
efficiency when dealing with complex molecules [11-13]. Bifunc-
tional solid catalysts provide a method for efficiently transforming
complex substrates into products since they integrate sequential cata-
lytic steps and avoid by-product formation and separation [14-16].

In organic synthesis, bifunctional catalysis denotes simultane-
ous activation of both partners of a bimolecular reaction [17].
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