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Measuring phenotypic assortment in animal social networks:
weighted associations are more robust than binary edges
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Grouping is a very common outcome of selection that operates on individual animals. Largely
considered to be driven by immediate benefits, such as avoiding predators, animal groups often
consist of individuals that are phenotypically more similar than expected from the population dis-
tribution. This suggests that the distribution and fitness of phenotypes may be shaped by multiple
levels of selection operating along different axes of behaviour. Thus, quantifying assortative mixing, or
the measure of association between similar individuals in social networks, should be a key component
of the biologist’s toolbox. Yet, assortment is rarely tested in animal social networks. This may be
driven by a lack of tools for robust estimation of assortment, given the reliance of current methods on
binary networks. In this paper, I extend existing approaches that calculate the assortativity coefficient
of both nominal classes and continuous traits to incorporate weighted associations. I have made these
available through a new R package ‘assortnet’. I use simulated networks to show that weighted
assortment coefficients are more robust than those calculated on binary networks to added noise that
could arise from random interactions or sampling errors. Finally, I demonstrate how these methods
differ by applying them to two existing social networks estimated from wild populations, exploring
assortment by species, sex and network degree. Given the parallel theoretical developments of the
importance of local social structure on population processes, and increasing data on social networks
being collected in free-living populations, understanding phenotypic assortment could yield signifi-
cant insight into social evolution.
� 2014 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Group living is frequently considered to be an adaptive strategy
primarily driven by ecological factors (Krause & Ruxton, 2002).
However, the fitness benefits accrued by individual participants
may vary not just with group size, but also as a function of its
phenotypic composition. For example, the predator confusion ef-
fect relies upon individuals being physically identical to other
members of their group (Landeau & Terborgh, 1986); that is, they
gain fitness benefits through being phenotypically assorted by size,
shape and colour. Alternatively, individuals may reduce resource
competition by associating with others that are specialized on
different niches, which may lead to disassortment by species as
seen in mixed-species foraging groups (Buskirk, 1976). In this way,
repeated nonrandom interactions between individuals of similar or
different phenotypes (or genotypes) can have profound evolu-
tionary implications (West-Eberhard, 1979; Wolf, Brodie, & Moore,
1999).

Social network analysis is a quantitative approach that captures
the emergent population-level properties of repeated interactions
between individuals (Croft, James, & Krause, 2008; Krause, Croft, &
James, 2007; Whitehead, 1997, 2008). Numerous reviews have
suggested that this method will provide an accessible way of esti-
mating the evolutionary consequences of social processes (Croft
et al., 2008; Farine, Garroway, & Sheldon, 2012; Krause et al.,
2007; Wey, Blumstein, Shen, & Jordan, 2008). Yet, one of the
simplest and most consequential social network measures, assor-
tative mixing (Newman, 2002a), has been relatively unexplored in
animal behaviour, particularly outside of fishes (see Croft et al.,
2012; Croft et al., 2009). This is surprising given that it is gener-
ally accepted that local social structure within populations can in-
fluence individual fitness (for example through indirect fitness,
Hamilton, 1964).

Assortment can arise through either active or passive pro-
cesses. Active assortment typically arises from attraction of in-
dividuals to others that are similar. For example fish will often
form shoals of similarly sized fish of both single and multiple
species (Hoare, Krause, Peuhkuri, & Godin, 2000; Hoare, Ruxton,
Godin, & Krause, 2000; Krause, Butlin, Peuhkuri, & Pritchard,
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2000), potentially to increase predator confusion (Krause &
Ruxton, 2002). Active attraction of behavioural phenotypes,
such as degree assortment (strong connections between simi-
larly gregarious individuals), is thought to be critical in medi-
ating processes in networks such as the spread of disease (Ashby
& Gupta, 2013) or the evolution of cooperation (Pusch, Weber, &
Porto, 2008). Active avoidance may also occur, resulting in dis-
assortment between interacting individuals. This is likely to be
common in systems in which different classes, such as males
and females, preferentially associate together, as in Tasmanian
devils, Sarcophilus harrisii (Hamede, Bashford, McCallum, &
Jones, 2009). In contrast to active attraction, assortment can
arise from passive processes such as differences in habitat use
strategies. For example, in some taxa individuals at different life
stages commonly occupy different niches, resulting in greater
spatial overlap (therefore social association) between similar
conspecifics (Holyoak, Casagrandi, Nathan, Revilla, & Spiegel,
2008).

A common method to measure assortment is the assortativity
coefficient (Newman, 2002a, 2003). This provides an index to
measure whether associations are typically between phenotypi-
cally similar or dissimilar individuals. Although Newman’s assor-
tativity coefficient has been used in a number of studies (Aplin
et al., 2013; Green, Gregory, & Munro, 2009; Hamede et al.,
2009; Leu, Bashford, Kappeler, & Bull, 2010; Lusseau & Newman,
2004; Lusseau et al., 2006; Manno, 2008; Mourier, Vercelloni, &
Planes, 2012; Wiszniewski, Lusseau, & Moller, 2010; Wolf,
Mawdsley, Trillmich, & James, 2007), its current restriction to bi-
nary networks may have hampered wider uptake in animal
studies. This is potentially because association data in animal so-
cial networks are more frequently inferred (A was seen with B)
than known (A directly interacted with B) as is more typical in
human networks (Croft, Madden, Franks, & James, 2011; Franks,
Ruxton, & James, 2010). As a result, this increases the relative in-
fluence of sampling error, or noise, in the data. Thus, binary
network-based assortment measures could be underestimating
assortment in animal studies. For example, imagine a network in
which individuals found in stable groups of six always have the
same five associates (they do not have an edge to themselves), and
all have the same phenotype. If one sample randomly captures
two groups together (through either observer error or otherwise),
then each individual in these two groups will have five edges
connected to associates of the same phenotype, and six connected
to associates with a different phenotype. If both groups are
sampled 50 times, then a weighted network will capture the fact
that the proportion of edge weights to the nonsimilar phenotypes
will be very low. In contrast, a binary network does not make this
distinction. Consequently, rare chance events can have signifi-
cantly greater influence on the perceived social structure in a bi-
nary network by being given the same weight as all other
observed edges.

One approach that has been suggested for overcoming the
limitations of binary networks, such as in the example described
above, is to construct these after first thresholding (removing or
setting to zero) edges above or below a certain value (James, Croft,
& Krause, 2009; Lusseau, Whitehead, & Gero, 2008). In general,
biologists typically repeatedly sample populations in order to infer
the social network (Franks et al., 2010; Lusseau et al., 2008); hence
thresholding is one way of maintaining some of the information
contained in the edge weights that would otherwise be thrown
away (Croft et al., 2011; Lusseau et al., 2008). The process of then
converting networks to binary is generally by directly replacing
nonzero edge values with one. For example, Newman’s original
assortativity coefficient is estimated based on the number of edges
that occur between different classes or phenotypes. By counting

edges of each type (where each edge adds 1 to the count), this
process is functionally equivalent to having all edge weights con-
verted to equal one.

To assess the biological importance of a network measure, one
needs to specify a relevant null model (Gotelli & Graves, 1996). Yet,
it remains unclear what constitutes an appropriate method for
building null models to assess the significance of the assortativity
coefficient in an observed network. In most studies using New-
man’s assortativity coefficient, authors have reported the standard
error calculated from jackknife simulations. However, Croft et al.
(2011) highlighted the need for care to be taken when testing
significance. They, and other authors (Bejder, Fletcher, & Brager,
1998; Whitehead, 1999; Whitehead, Bejder, & Ottensmeyer,
2005), suggested that null models for social networks should ac-
count for potential sampling biases and nonindependence in the
data. In the case of assortment, this suggests that it may be
inappropriate to assume that the null expectation is a coefficient
index of 0 if the sampling method could have introduced some
biases. Here there are two generally accepted alternatives that can
be used. The first approach for resolving this is a node-based
permutation, in which the association matrix is repeatedly ran-
domized by shuffling the rows and columns while keeping the
node labels fixed (for example in Aplin et al., 2013). The second
method shuffles the data stream in order to control for individual
gregariousness and group size distribution. Both these methods
have been extensively described in the context of testing hy-
potheses for social networks (Bejder et al., 1998; Croft et al., 2011;
Manly, 1997; Whitehead, 2008; Whitehead et al., 2005). However,
they have rarely been compared using empirical data in the
context of assortativity.

In this paper, I have the following aims. (1) I first present a
method to incorporate weighted network edges into the Newman
(2003) assortativity coefficient. Although this approach was
derived for continuous measures (Leung & Chau, 2007), I extend it
by also deriving the weighted-edge coefficient for nominal node
values. To my knowledge, this method has never been used in an-
imal social networks, so I developed an R (R Development Core
Team, 2013) package ‘assortnet’ in order to promote its wider use.
(2) I then quantify the relative performance of the different ap-
proaches of calculating assortativity by assessing the robustness of
using weighted, thresholded and binary networks to sampling er-
ror. Using simulations, I show that indices incorporating weighted
edges are significantly more robust to sampling noise than those
using binary edges. (3) Using networks from two recently pub-
lished studies (Farine et al., 2012; Farine & Milburn, 2013), I then
investigate assortment according to different phenotypic traits and
demonstrate how weighted and binary measures differ. Given the
potential for random interactions to have a strong influence on
binary network structure, I predicted that a weighted assortment
measure is likely to provide a more robust estimate of assortment
when compared to a binary assortment measure applied to the
same network. (4) Finally, I compare the three common approaches
for testing significance in the assortment measure to determine
whether there are incompatibilities between these approaches.

METHODS

Incorporating Edge Weight into Assortment Measures

Newman (2003) defined the assortativity coefficient for nomi-
nal classes of individuals as:
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